期刊文献+

Existence of two periodic solutions of a ratio-dependent Holling-Taner model with infinite delay and prey harvest 被引量:5

Existence of two periodic solutions of a ratio-dependent Holling-Taner model with infinite delay and prey harvest
下载PDF
导出
摘要 This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions for the existence of at least two positive periodic solutions of this model is established. This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions for the existence of at least two positive periodic solutions of this model is established.
作者 TIAN De-sheng
机构地区 College of Sciences
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2008年第2期136-142,共7页 高校应用数学学报(英文版)(B辑)
关键词 Holling-Taner model RATIO-DEPENDENT HARVEST periodic solution coincidence degree. Holling-Taner model, ratio-dependent, harvest, periodic solution, coincidence degree.
  • 相关文献

二级参考文献15

  • 1高建国.基于比率的Holling-Tanner系统全局渐近稳定性[J].生物数学学报,2005,20(2):165-168. 被引量:25
  • 2Arditi, R., Ginzburg, L.R. Coupling in predator-prey dynamics: ratio-dependence. J. Ther. Biol., 139:311-326 (1989).
  • 3Berryman, A.A. The origins and evolution of predator-prey theory. Ecology, 75:1530-1535 (1992).
  • 4Fan,M., Wang, Q., Zou,X. Dynamics of a non-autonomous ratio-dependent predator-prey system. Proceedings of the Royal Society of Edinburgh, 133A: 97-118 (2003).
  • 5Gaines, R.E., Mawhin, J.L. Coincidence degree and non-linear differential equations. Springer-Verlag,Berlin, 1977.
  • 6Ma, Z. Mathematical modeling and studying on species ecology. Education Press, Hefei, 1996 (in Chinese).
  • 7Zhang, Z,, Zeng, X. A periodic stage-structure Model. App. Math. Letters, 16:1053-1061 (2003).
  • 8Gaines R. E. , Mawhin J. L. Coincidence degree and non-linear differential equations [M]. Berlin:Springer, 1977.
  • 9Zhang Zhengqiu, Zeng Xianwu. A periodic stage-structure Model[J]. App. Math. Letters, 2003, 16:1053-1061.
  • 10范猛,王克.具有偏差变元的捕食者-食饵系统全局周期解的存在性[J].应用数学学报,2000,23(4):557-561. 被引量:29

共引文献48

同被引文献17

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部