期刊文献+

基于主成分分析的三维医学图像快速配准算法 被引量:8

A fast 3-D medical image registration algorithm using principal component analysis
下载PDF
导出
摘要 本文提出了一种新的基于主成分分析的三维医学图像快速配准算法。传统的基于灰度的方法需要考虑整个三维数据的灰度信息,计算复杂度大,无法满足临床需要。而本算法利用数据的轮廓特征,通过主成分分析计算出图像的质心和主轴,通过对齐质心和主轴完成配准。实验结果表明此方法能准确,快速地处理图像刚性配准问题,特别适用于三维医学图像的配准。 This paper presents a new 3-D image registration method based on the principal component analysis (PCA). Compared with intensity-based registration methods using the whole volume intensity information, our approach utilizes PCA to estimate the centroid and principal axis, and completes the registration by aligning the centroid and principal axis. We evaluated the effectiveness of this approach by applying it to simulated and actual brain image data (MR, CT, PET, and SPECT). The experimental results indicate that the algorithm is effective, especially for registration of 3-D medical images.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2008年第9期1591-1593,共3页 Journal of Southern Medical University
基金 国家973重点基础研究发展规划项目(2003CB716103)
关键词 医学图像 主成分分析 网像配准 主轴 medical image principal component analysis image registration principal axis
  • 相关文献

参考文献6

  • 1Antoine JB, Viergever MA. A survey of medical image registration [ J ]. J Med Image Anal, 1998, 2(1): 1-36.
  • 2Zitova B, Flusser J. Image registration methods: a survey[J ]. Image Vision Comp, 2003, 21(11): 977-1000.
  • 3Maes F, Collignon A, Vandermeulen D, et al. Multimodality image registration by maximization of mutual information [J].IEEE Trans Med Imaging, 1997, 16(2): 189-98.
  • 4吕庆文,陈武凡.基于互信息熵差测度的医学图像自动优化分割[J].中国科学(E辑),2006,36(6):657-667. 被引量:11
  • 5Alpert NM, Bradshaw JF. Principal axes transformation:a method for image registration [ J ]. J Nucl Med, 1990, 31 ( 10): 1717-22.
  • 6Bulow H, Dooley L, Wermser D. Application of principal axes for registration of NMR image [J]. Pattern Recogn Lett. 2000, 21 (4): 329-36.

二级参考文献20

  • 1陈武凡 鲁贤庆 陈建军.彩色图像边缘检测的新算法—广义模糊算子法[J].中国科学:A辑,1995,2:219-225.
  • 2Zhang Y,Brady M,Smith S.Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.IEEE Trans Med Image,2001,20(1):45-57
  • 3Ruan S,Moretti B,Fadili J,et al.Fuzzy Markovian segmentation in application of magnetic resonance images.Comp Vision Image Under,2002,85:54-69
  • 4Feng Y,Chen W.Brain MR image segmentation using fuzzy clustering with spatial constraints based on Markov random field theory.In:Proc of MIAR 2004 (LNCS 3150,Beijing).Berlin:Springer-Verlag,2004.188-195
  • 5Yang F,Jiang T.Pixon-based image segmentation with Markov random fields.IEEE Trans Image Process,2003,12(12):1552-1559
  • 6Dunn J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters.J Cybern,1973,3:32-57
  • 7Bezdek J C.Pattern Recognition with Fuzzy Objective Function Algorithms.New York:Plenum Press,1981
  • 8Geman S,Geman D.Stochastic relaxation,Gibbs distributions and the Bayesian restoration of images.IEEE Trans Pattern Anal Machine Intell,1984,6 (6):721-741
  • 9Pina R K,Puetter R C.Bayesian image reconstruction:The pixon and optimal image modeling.Publ Astron Soc Pac,1993,105:630-637
  • 10Maes F,Collignon A.Multimodality image registration by maximization of mutual information.IEEE Trans Med Imag,1997,16(2):187-198

共引文献10

同被引文献74

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部