期刊文献+

基于核方法的中文实体关系抽取研究 被引量:18

A Study on Kernel-based Chinese Relation Extraction
下载PDF
导出
摘要 命名实体关系抽取是信息抽取领域中的重要研究课题之一。该文探讨了核方法在中文关系抽取上的有效性问题,主要分为三部分:研究了在卷积树核中使用不同的语法树对关系抽取性能的影响;通过构造复合核检查了树核与平面核之间的互补效果;改进了最短路径依赖核,将核计算建立在原最短依赖路径的最长公共子序列上,以消除原始最短路径依赖核对依赖路径长度相同的过严要求。因为核方法开始被用于英文关系抽取时,F1值也只有40%左右,而我们在ACE2007标准语料集上的实验结果表明,只使用作用在语法树上的卷积核时,中文关系抽取的F1值达到了35%,可见卷积核方法对中文关系抽取也是有效的,同时实验也表明最短路径依赖核对中文关系抽取效果不明显。 Entity Relation Extraction is one of the important research fields in Information Extraction. This paper explores the effectiveness of two kernel-based methods, the convolution tree kernel and the shortest path dependency kernel, for Chinese relation extraction based on ACE 2007 corpus. For the convolution kernel, the influence by the different parse tree spans on the performance of relation extraction is studied. Then, experiments with composite kernels, which are a combination of the convolution kernel and feature-based kernels, are conducted to investigate the complementary effects between tree kernel and flat kernels. Finally, we improve the shortest path dependency kernel by replacing the strict same length requirement with finding the longest common subsequences between two shortest dependency paths. Experiments prove that kernel-based methods are effective for Chinese relation extraction as well.
出处 《中文信息学报》 CSCD 北大核心 2008年第5期102-108,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(6077302760736044) 国家863计划重点资助项目(2006AA010108)
关键词 计算机应用 中文信息处理 中文实体关系抽取 核方法 卷积树核 复合核 最短路径依赖核 computer application Chinese information processing Chinese relation extraction Kernel-based methods convolution tree kernel composite kernels shortest path dependency kernel
  • 相关文献

参考文献21

  • 1Message Understanding Conferences (MUC) 1987- 1998. [DB/OL]http: //www. itl. nist. gov/iaui/894. 02/related_projects/muc/.
  • 2NIST Automatic Content Extraction (ACE)2002- 2007. [DB/OL]http.. //projects. ldc. upenn, edu/ace/.
  • 3Kambhatla Nanda. Combining lexical, syntactic and semantic features with Maximum Entropy models for extracting relations[C]//The Companion Volume to the Proceedings of 42nd Annual Meeting of the Association for Computational Linguistics, Barcelona, Spain: 2004, 178-181.
  • 4Zhou G. D. , Su J. , Zhang J. , and Zhang M.. Exploring Various Knowledge in Relation Extraction[C]// Proc of 43rd Annual Meeting of the Association for Computational Linguistics, University of Michigan, USA, 2005,427-434
  • 5Zelenko D., Aone C. and Richardella A. Kernel Methods for Relation Extraction[J]. Journal of Machine Learning Research. 2003,(2) : 1083-1106.
  • 6Culotta A. , Sorensen J. Dependency Tree Nernel ior Relation Extraction[C]//The Companion Volume to the Proceedings of 42nd Annual Meeting of the Association for Computational Linguistics, Barcelona, Spain: 2004, 423-429.
  • 7Bunescu R. C. and Mooney R. J. A Shortest Path Dependency Kernel for Relation Extraetion[C]//Proceedings of the Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, Vancouver, Canada, 2005, 724-731.
  • 8Zhang M, Zhang J, and Su J. Exploring syntactic features for relation extraction using a convolution tree kernel [C]// Proceedings of the Human Language Technology conference - North American chapter of the Association for Computational Linguistics annual meeting. New York, USA: 2006.
  • 9ZhouG. D., Zhang M, JiDH, Zhu Q.M. Tree Kernel-based Relation Extraction with Context-Sensitive Structured Parse Tree Information[C]//Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Prague, June 2007, 728-736.
  • 10ZhangM., ZhangJ., SuJ. andZhouG. D. A Composite Kernel to Extract Relations between Entities with both Flat and Structured Features[C]//Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, Sydney, Australia, 2006, 825-832.

二级参考文献36

  • 1钟义信.自然语言理解的全信息方法论[J].北京邮电大学学报,2004,27(4):1-12. 被引量:42
  • 2车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 3梁晗,陈群秀,吴平博.基于事件框架的信息抽取系统[J].中文信息学报,2006,20(2):40-46. 被引量:38
  • 4In: Proceedings of the 6th Message Understanding Conference (MUC - 7) [ C ]. National Institute of Standars and Technology, 1998.
  • 5C. Aone and M. Ramos-Santacruz. Rees: A large-scale relation and event extraction system[A]. In: Proceedings of the 6th Applied Natural Language Processing Conference[C] ,pages 76- 83, 2000.
  • 6S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schwartz, R. Stone, R. Weischedel, and the Annotation Group.Algorithms that learn to extract information-BBN: Description of the SIFT system as used for MUC[ A]. In: Proceedings of the Seventh Message Understanding Conference (MUC-7)[C], 1998.
  • 7S. Soderland. Learning information extraction rules for semi-structured and free text[J]. Machine Learning, 1999. 34(1 - 3) :233 - 272.
  • 8N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines[ M]. Cambridge University Press,Cambirdge University, 2000.
  • 9T. Zhang. Regularized winnow methods[A]. In: Advances in Neural Information Processing Systems 13[C], pages703 - 709, 2001.
  • 10D. Haussler. Convolution kernels on discrete structures[R]. Technical Report UCSC-CRL- 99- 10, 7, 1999.

共引文献137

同被引文献225

引证文献18

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部