期刊文献+

基于自动问答系统的信息检索技术研究进展 被引量:10

Survey on information retrieval system based on question answering system
下载PDF
导出
摘要 自动问答是根据用户以自然语言提出的问题给出一个明确的答案。近年来,自动问答越来越受到信息检索和自然语言处理的研究者的关注。典型的自动问答系统通常包含问题分析、文段检索和答案选择等部件。介绍了自动问答的最新研究进展和相关国际会议情况,着重阐述问题分类、查询扩展、文段检索和答案选择这四个热点技术的主要功能和常用方法,最后提出存在的一些问题和展望。 Question Answering (QA) aims to find actual answers to users' questions in natural language, It has attracted more and more attention from the researchers in information retrieval and natural language research field. A typical QA system adopts a pipeline structure that contains "question analysis", "passage retrieval" and "answer selection" modules. In this paper, the research literature and the famous international conferences in QA research area were surveyed. The functions and methods of hot topics were mainly presented such as question analysis, query expansion, passage retrieval and answer selection. Furthermore, some existing problems were proposed in these studies.
出处 《计算机应用》 CSCD 北大核心 2008年第11期2745-2748,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(6067313560736020) 教育部新世纪优秀人才支持计划资助项目(NCET-04-0805) 广东省自然科学基金资助项目(7003721)
关键词 自动问答 信息检索 自然语言处理 查询扩展 Question Answering (QA) information retrieval natural language processing query expansion
  • 相关文献

参考文献15

  • 1VOORHEES E M, TICE D M. Building a question answering test collection[ C]// Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2000:200-207.
  • 2TREC. The Text REtrieval Conference (TREC) [ EB/OL]. [ 2008 - 02 - 15]. http://trec, nist. gov/.
  • 3ZHANG D, LEE W S. Question classification using support vector machines[ C]// Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press. 2003:26-32.
  • 4MOSCHITTI A. Efficient convolution kernels for dependency and constituent syntactic trees[ C]// Proceedings of the 17th European Conference on Machine Learning, LNCS 4212. Berlin: Springer- Verlag, 2006:318 - 329.
  • 5LI X, ROTH D. Learning question classifiers: The role of semantic information[ J]. Journal of Natural Language Engineering, 2005, 12 (3) :229 -249.
  • 6BLUNSOM P, KOCIK K, CURRAN J R. Question classification with log-linear models[ C]// Proceedings Of the 29th Annual International ACM SIGIR Conference on Research and Developmenl in Information Retrieval. New York: ACM Press, 2006:615 -616.
  • 7TELLEX S, KATZ B, LIN J, et al. Quantitative evaluation of passage retrieval algorithms for question answering[ C]// Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2003:41-47.
  • 8SUN R, ONG C H, CHUA T S. Mining dependency relations for query expansion in passage retrieval[ C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2006: 382 - 389.
  • 9METZLER D, CROFT W B. Latent concept expansion using Markov random fields[ C]// Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2007:311 -318.
  • 10CUI H, SUN R, LI K, et al. Question answering passage retrieval using dependency relations[ C]// Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2005:400 - 407.

同被引文献152

引证文献10

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部