期刊文献+

基于标准化高斯pLSA协同过滤的用电量预测模型 被引量:3

Load-forecasting model based on normalized Gaussian pLSA collaborative filtering
下载PDF
导出
摘要 现有的电力负荷预测算法在中长期预测时存在不同程度的局限性.究其原因,是因为影响复杂非线性系统输出的变元过多,难以用解析的方法对其进行描述.本文提出利用概率潜在语义分析使历史随机数据呈现出各种有规律的示象(aspect),结合对内容的协同过滤技术去建立用电量预测模型,从而利用统计学习的方法避开了对影响系统输出的隐含变元的寻找与刻画.采用MATLAB进行数值仿真实验的结果表明该算法相比于神经网络和灰色预测在准确度方面具有优势. To some extent the existing long-term load-forecasting algorithms have their limitations because the variables influencing the output of the complex non-finear system are too many to be described. By combining the probabilistic Latent Semantic Analysis (pLSA) that can cluster random data into respective aspects and content-based collaborative filtering, a novel load forecasting model based on normalized Gaussian probabilistic latent semantic analysis collaborative filtering is proposed in order to avoid seeking and describing of the hidden variables mentioned above. Simulating experiments via MATLAB show that this method gains the advantage in accuracy over neural network and grey prediction.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第5期929-932,937,共5页 Control Theory & Applications
关键词 概率潜在语义分析 协同过滤 示象模型 用电量预测模型 probabilistic latent semantic analysis collaborative filtering aspect model load forecasting model
  • 相关文献

参考文献9

  • 1HOFMANN T. Unsupervised learning by probabilistic latent semantic analysis[J]. Machine Learning, 2001, 42(1): 177 - 196.
  • 2HOFMANN T, PUZICHA. Latent class models for collaborative filtering[C]/IProceedings of the International Joint Conference on Artificial Intelligence. San Fransisco: Morgan Kaufmann Publishers Inc., 1999:688 - 693.
  • 3HOFMANN T. Latent semantic models for collaborative filtering[J]. ACM Transactions on Information Systems, 2004, 22(1): 89 - 115.
  • 4BREESE J S, HECKERMAN D, KARDIE C. Empiricial analysis of predictive algorithms for collaborative filtering[C]//Proceedings of the 14th Conference on Uncertainity on Aritificial Intelligence. San Fransiseo: Madison, Wisconsin, Morgan Kaufmann Publishers Inc., 1998:43 - 52.
  • 5罗滇生,姚建刚,何洪英,张佳启,董书大.基于自适应滚动优化的电力负荷多模型组合预测系统的研究与开发[J].中国电机工程学报,2003,23(5):58-61. 被引量:34
  • 6张大海,江世芳,史开泉.灰色预测公式的理论缺陷及改进[J].系统工程理论与实践,2002,22(8):140-142. 被引量:280
  • 7韩敏,韩冰.一种通用学习网络自适应算法及其在预测控制中的应用[J].控制理论与应用,2006,23(6):900-906. 被引量:4
  • 8中国电力年鉴1992-2001[M].北京:中国电力出版社,1992-2001.
  • 9中国统计年鉴1992-2001[M].北京:中国统计出版社,1992-2001.

二级参考文献19

  • 1舒迪前.预测控制系统及其应用[M].北京:机械工业出版社,1998..
  • 2Reeves G R, Lawrence K D. Combing forecasts given different types of objectives[J]. European Journal of Operational Research, 1997,101(1): 98-105.
  • 3BALESTRINO A, VERONA F B, LANDI A. On-line process estimation by ANNs and Smith controller dedign[J]. IEEE Proceeding: Control Theory and Applications, 1998, 145(2): 231 - 235.
  • 4NARENDRA K S, PARTHASARATHY K, Identification and control of dynamical systems using neural networks[J], IEEE Trans on Neural Networks, 1990, 1(1): 4- 27.
  • 5BECERRA V M, GARCES F R, NASUTO S J, et al. An efficient parameterization of dynamic neural networks for nonlinear system identification[J]. IEEE Trans Neural Networks, 2005, 16(4): 983 -988.
  • 6NORQUAY S J, PALAZOGLU A, ROMAGNOLI J A. Application of wiener model predictive control (WMPC) to a pH neutralization experiment[J]. IEEE Trans on Control Systems Technology, 1999,7(4): 437 - 445.
  • 7WERBOS P J. Backpropagation through time: what it dose and how to do it[J]. Proceedings of the IEEE, 1990, 78(10): 1550 - 1560.
  • 8PARIS A M, JOHN B T. A recurrent fuzzy-neural model for dynamic system identification[J]. IEEE Trans on System, Man and Cybernetics. Part B: Cybernetics, 2002, 32(2): 176- 189.
  • 9陈捷,钱清泉,王宁.适用于非线性对象的神经元非模型控制方法[J].西南交通大学学报,1998,33(2):188-191. 被引量:7
  • 10陆燕,杜继宏,李春文.延迟时间未知的时延系统神经网络补偿控制[J].清华大学学报(自然科学版),1998,38(9):67-69. 被引量:27

共引文献315

同被引文献45

  • 1Yang J C, Yu K, Gong Y H, et al. Linear spatial pyramid matching using sparse coding for image classification [C]// Proceedings of the 22nd International Conference on Computer Vision and Pattern Recognition. Miami, USA : IEEE Computer Society, 2009: 1794-180l.
  • 2Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories [C]// Proceedings of the 19th International Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Computer Society, 2006: 2169-2178.
  • 3Eitz M, Hildebrand K, Boubekeur T, et al. Sketch-based image retrieval: benchmark and bag-of-featues descriptors [JJ. IEEE Transactions on Visualization and Computer Graphics, 2011, 17 (11 ) : 1624-1636.
  • 4Vedali A, Gulshan V, Varma M, et al. Multiple kernels of object detection [C]//Proceedings of the 12th International Conference on Computer Vision. Tokyoi Japan , IEEE Computer Society ,2009: 606-613.
  • 5Signaraju D, Vidal R. Using global bag of features models in random fields for joint categorization and segmentation of objects [C] /IProceedings of the 24th International Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE Computer Society, 2011: 2313-2319.
  • 6Yang F, Lu H, Zhang W, et al. Visual tracking via bag of features[J]. Image Processing, 2012, 6(2): 115-128.
  • 7Nicosevici T, Garcia R. Automatic visual bag-of-words for online robot navigation and mapping [J] . IEEE Transactions on Robotics, 2013, 28 (4) : 886-898.
  • 8Ji R R, Yao H X, Liu W. Task-dependent visual-codebook compression [J]. IEEE Transactions on Image Processing, 2012: 21 (4) :2282-2293.
  • 9Bosch A, Zisserman A, Munoz X. Scene classification using a hybrid generativel discriminative approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(4): 712-728.
  • 10Yang S, Zhao C X. A Fusing algorithm of bag-of-features and Fisher linear discriminative analysis in image classification [C]// Proceedings of the 2nd International Conference on Information Theory and Technology. Wuhan, China: IEEE Computer Society, 2012 :380-383.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部