期刊文献+

基于MCMC方法的正则粒子滤波算法及其应用 被引量:24

Regularized particle filtering algorithm and its application based on MCMC method
下载PDF
导出
摘要 粒子退化现象是一般粒子滤波无法避免的问题。通过分析该现象产生的原因,提出了将MCMC(马尔可夫链蒙特卡罗)方法应用于正则粒子滤波算法(RPF),与采样重要重采样(SIR)粒子虑波算法比较,此算法不仅克服了粒子退化现象,而且解决了重采样带来的采样枯竭的影响,仿真和实验结果表明:该算法在滤波精度和自适应调整粒子个数方面比SIR粒子滤波有很大的提高。 Particle degeneracy phenomenon is avoidless problem in particle filtering application. Based on analyzing the cause of particle degeneracy, the regularized particle filtering with MCMC move step is proposed. The improved approach not only overcomes the effect of particle degeneracy, but also solves the sample impoverishment arisen from resampling. Simulation and experiment results demonstrate that in terms of filtering accuracy and the ability of auto- matically adjusting samples, the presented algorithm has much amelioration over SIR particle filtering.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第10期2156-2162,共7页 Chinese Journal of Scientific Instrument
关键词 正则粒子滤波 马尔可夫链蒙持卡罗 重采样 粒子退化 采样枯竭 regularized particle filtering MCMC resampling particle degeneracy sample impoverishment
  • 相关文献

参考文献10

  • 1ARULAMPALAM S, MASKELL S, GORDON N. A tutorial on particle filters for online non-linear/non-gaussian bayesian tracking [ J ]. IEEE Transaction on Signal Processing, 2002,50(2) : 174-188.
  • 2DOUCET A, GORDON N J. Sequential Monte Carlo methods in practice [ M ]. New York : Springer-Verlag, 2001.
  • 3DOUCET A, GORDON N J. On sequential simulation- based methods for bayesian filtering[ M ]. Technical Target Track, SPIE Signal and Data Processing of Small Targets, 1999.
  • 4LIU J S, CHEN R. Sequential Monte Carlo methods for dynamic systems[J]. Journal of the American Statistical Association, 1998 : 1032-1044.
  • 5CRISAN D, DOUCET A. Convergence of sequential Monte Carlo methods, technical report CUED/F-INFENG/TR381 [ R]. Signal Processing Group, Department of Engineering, University of Cambridge, 2000:65-86.
  • 6MERVE R V, DOUCET A. The unscented particle filter [ R]. Technical Report CUED/F-INFENF TR 380, 2000.
  • 7ATHANS M, WISHNER R P, BERTOLINI A. Suboptimal state estimation for continuous time nonlinear systems from discrete noisy ts [ J ]. IEEE Transactions on Automatic Control, 1968(13) :504-514.
  • 8KITAGAWA G. Non-gaussian state-space modeling of nonstationary time-series [ J ]. Journal of the American Statistical Association, 1987,82(400) :1032-1063.
  • 9BEADLE E R, DJURIC P M. A fast weighted Bayesian bootstrap filter for nonlinear model state estimation [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1997,33( 1 ) :338-343.
  • 10JULIER S, UHLMANN J, DURRANT-WHYTE H F. A new method for nonlinear transformation of means and covariances in filters and estimator[ J]. IEEE Transactions on Automatic Control, 2000,45 ( 3 ) :477-482.

同被引文献253

引证文献24

二级引证文献235

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部