摘要
A good mechanical model of magnetorheological damper (MRD) is essential to predict the shock isolation performance of MRD in numerical simulation. But at present, the mechanical models of MRD were all derived from the experiment subjected to harmonic vibration loads. In this paper, a commercial MRD (type RD-1005-3) manufactured by Lord Corporation was studied ex-perimentally in order to investigate its isolation performance under the impact loads. A new me-chanical model of MRD was proposed according to the data obtained by impact test. A good agreement between the numerical results and test data was observed, which showed that the model was good to simulate the dynamic properties of MRD under impact loads. It is also demon-strated that MRD can improve the acceleration and displacement response of the structure obvi-ously under impact loads.
A good mechanical model of magnetorheological damper (MRD) is essential to predict the shock isolation performance of MRD in numerical simulation. But at present, the mechanical models of MRD were all derived from the experiment subjected to harmonic vibration loads. In this paper, a commercial MRD (type RD-1005-3) manufactured by Lord Corporation was studied ex- perimentally in order to investigate its isolation performance under the impact loads. A new me- chanical model of MRD was proposed according to the data obtained by impact test. A good agreement between the numerical results and test data was observed, which showed that the model was good to simulate the dynamic properties of MRD under impact loads. It is also demon- strated that MRD can improve the acceleration and displacement response of the structure obvi- ously under impact loads.
基金
Supported by National Natural Science Foundation of China (No.50638030,50525825)
the National Science and Technology SupportProgram (No.2006BAJ13B02)