期刊文献+

Mixed time discontinuous space-time finite element method for convection diffusion equations 被引量:1

Mixed time discontinuous space-time finite element method for convection diffusion equations
下载PDF
导出
摘要 A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method. A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第12期1579-1586,共8页 应用数学和力学(英文版)
基金 supported by the National Natural Science Foundation of China (No. 10601022) NSF ofInner Mongolia Autonomous Region of China (No. 200607010106) 513 and Science Fund of InnerMongolia University for Distinguished Young Scholars (No. ND0702)
关键词 convection diffusion equations mixed finite element method time discontinuous space-time finite element method CONVERGENCE convection diffusion equations, mixed finite element method, time discontinuous space-time finite element method, convergence
  • 相关文献

参考文献3

二级参考文献12

  • 1[1]Eriksson K, Johson C. Adaptive finite element m ethods for parabolic problems Ⅰ: A linear model problem[J]. SIAM J Numer An al,1991,28(1):43—77.
  • 2[2]Eriksson K, Johson C. Adaptive finite element methods for paraboli c problems Ⅱ: Optimal error estimates in L∞L2 and L∞L∞[J] . SIAM J Numer Anal,1995,32(3):706—740.
  • 3[3]Eriksson K, Johson C. Adaptive finite element methods for paraboli c problems Ⅳ: A nonlinear problem[J]. SIAM J Numer Anal,1995,32 (3):1729—1749.
  • 4[4]Makridakis CH G, Babuska I. On the stability of the discontinuous Galerkin method for the heat equation[J]. SIAM J Numer Anal,1997,3 4(1):389—401.
  • 5[5]Kabakashian C, Makridakis C. A space-time finite element method fo r the nonlinear Schrodinger equation: the discontinuous Galerkin method[J]. Math Comput,1998,97(222):479—499.
  • 6[6]Brenner S C, Scoot L R. The Mathematical Theory of Finite Elemen t Method[M]. New York: Springer-Verlag,1994.
  • 7[7]Ciarlet P G. The Finite Element Method for Elliptic Problems[ M]. Amsterdam: North-Holland,1978.
  • 8Delfour M,Fortin M,Payre G.Finite-difference solution of a non-linear Schrodinger equation[J].Journal of Computational Physics,1981,44(12):277-288.
  • 9Qhannes Karakashian,Charalambos Makridakis.A space-time finite element method for The nonlinear Schrodinger equation:the discontiouous Galerkin method[J].Mathematics of Computation,1998,67(1):479-499.
  • 10张鲁明,常谦顺.非线性Schrdinger方程的守恒数值格式[J].计算物理,1999,16(6):661-668. 被引量:14

共引文献23

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部