期刊文献+

多学科设计优化算法比较及其在船舶和海洋平台设计上的应用 被引量:10

A comparison of Multidisciplinary Design Optimization algorithms and their application to the design of ships and offshore platforms
下载PDF
导出
摘要 多学科设计优化(Multidisciplinary Design Optimization,简称MDO)是一种通过充分探索和利用系统中的相互作用的协同机制来设计复杂系统工程和子系统的方法论。多学科设计优化算法是其核心部分,也是研究最活跃的领域。文中首先介绍了MDO算法的定义、分类和发展,然后从算法的来源和目的、优化过程、优缺点、改进方法和应用情况等五个方面对四种基于分解技术的MDO算法进行了综述,进而对比了这四种算法的异同点。最后,针对船舶和海洋平台设计的具体特点,归纳了适合于船舶或海洋平台多学科设计优化的MDO算法所需要具备的特征,并建议使用基于近似模型的协同优化算法或BLISS 2000算法进行船舶和海洋平台的多学科设计优化。 Multidisciplinary Design Optimization (MDO) is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. Due to the obvious shortcomings of the traditional design-spiral approach for both ships and offshore platforms, it leads naturally to the desire to implement MDO techniques. This paper introduces the definition, category and development of MDO algorithm.The latter is the core technique of MDO theory and that is mostly studied.Four mainstream algorithms are elaborated from five aspects: origin, optimization procedure, advantages and disadvantages,other variants and their applications.Then a comparison of them is made. Finally, based on the analysis of the characteristics of the design of ships and offshore platforms, some cru- cial and desirous qualities for an algorithm when implementing MDO are concluded. In addition, two algorithms-collaborative optimization based on approximation models and BLISS 2000 are recommended as suitable methods to apply MDO techniques in the design of ships and offshore platforms.
作者 姜哲 崔维成
出处 《船舶力学》 EI 北大核心 2009年第1期150-160,共11页 Journal of Ship Mechanics
关键词 多学科设计优化 多学科设计优化算法 船舶和海洋平台设计 基于近似模型的协同优化算法 BLISS 2000算法 multidisciplinary design optimization multidisciplinary optimization algorithm design of ships and offshore platforms collaborative optimization based onapproximation model BLISS 2000
  • 引文网络
  • 相关文献

参考文献48

  • 1Sobiesczanski-Sobieski J. The sensitivity of complex, internally coupled systems[J]. AIAA Journal, 1990, 28(1): 153-160.
  • 2Sobiesczanski-Sobieski J. Optimization by decomposition: A step from hierarchic to non-hierarchic systems[R]. 2nd NASA/Air Force Symposium on Recent Advances in Muhidisciplinary Analysis and Optimization, Hampton, VA, 1988. NASA-TM-101494, NASA-CP-3031, Part 1.
  • 3刘克龙,姚卫星,余雄庆.几种新型多学科设计优化算法及比较[J].计算机集成制造系统,2007,13(2):209-216. 被引量:12
  • 4Alexandrov N M, Lewis R M. Comparative properties of collaborative optimization and other approaches to MDO[R]. NASA/ CR-1999-209354.
  • 5Bailing R J, Sobieszczanski-Sobieski J. Optimization of coupled systems: A critical overview of approaches[J]. AIAA Journal, 1996, 34(1): 6-7.
  • 6Messac A. Physical programming: Effective optimization for computational design[J]. AIAA Journal, 1996, 34(1): 149-158.
  • 7Kim H M, Michelena N F, Papalambros P Y, et al. Target cascading in optimal system design[J]. Journal of Mechanical Design (Transactions of the ASME), 2003, 125(3): 474-480.
  • 8de Weck 0 L, Jones M B. Isoperformance: Analysis and design of complex systems with desired outcomes[J]. System Engineering, 2006, 9(1): 45-61.
  • 9de Weck O L, Agte J, Sobieszczanski-Sobieski J, et al. State-of-the-Art and future trends in multidisciplinary design optimization[C]// 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference. AIAA2007- 1905, Hawaii, USA, Apr. 23-26, 2007.
  • 10Kroo I M, Altus S, Braun R D, Gage P, et al. Multidisciplinary optimization methods for aircraft preliminary design[C]// AIAA-94-4325-CP, the 5th AIAA/USAF/NASA/ISSMO Symposium on Muhidisciplinary Analysis and Optimization. Panama City Beach, Florida, Sept. 7-9, 1994. 697-707.

二级参考文献41

  • 1Braun R D, Kroo I. Use of the Collaborative Optimization Architecture for Launch Vehicle Design.Proceedings of 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WS,1996.
  • 2Alexandrov N, Kodiyalam S. Initial Results of an MDO Method Evaluation Study. Proceedings of 7th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Saint Louis,MO. 1998.
  • 3Alexandrov N, Lewis R M. Analytical Computational Aspects of Collaborative Optimization for Multidiscipliary Design. AIAA Journal, 2002, 40(2): 301-309.
  • 4Cormier T. Comparison of Collaborative Optimization to Conventional Design Teehniques for Conceptual RLV. Proceedings of 8th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA. 2000.
  • 5DeMiguel A V. Two Decomposition Algorithms for Noneonvex Optimization Problems with Global Variables : [Ph. D. Dissertation]. California :Stanford University, 2001.
  • 6Renaud J, Gabriele G. Approximation in Non--hierarchic System Optimization. AIAA Journal,1994, 32(1): 198-205.
  • 7Papila M, Haftka R T. Response Surface Approximations: Noise, Error Repair, and Modeling Errors. AIAA Journal, 2000, 38(12): 2336-2343.
  • 8Sobiesczanski-Sobieski J. Optimization by Decomposition.. A Step from Hierarchic to Non-Hierarchic Systems. NASA Conference Publication 3031, Part 1, Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, Hampton, Virginia, 1988.
  • 9Giunta A A. Aircraft Multidisciplinary Design Optimization Using Design of Experiments Theory and Response Surface Modeling Methods. A Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1997.
  • 10Kroo I, Manning V. Collaborative Optimization: Status and Directions. AIAA 2000-4721.

共引文献50

同被引文献67

引证文献10

二级引证文献24

相关主题

;
使用帮助 返回顶部