期刊文献+

广义平均曲率方程组的径向对称解

Radially Symmetric Solutions of Generalized Mean Curvature Equations
下载PDF
导出
摘要 在单位球内考虑广义平均曲率方程组具有Dirichlet边值条件的径向古典解,运用摄动技巧、拓扑方法及比较原理,在一个适当的条件下,证明了广义平均曲率方程组径向对称解的存在性. The existence of the radially classical solutions with Dirichlet boundary value in unit ball was investigated. Based on perturbation technique, topological method and comparability theorem, the existence of the radially symmetric solutions for the generalized mean curvature equations with proper presupposition was established.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第2期228-232,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:J0630104)
关键词 广义平均曲率方程组 径向对称解 存在性 generalized mean curvature equations radially symmetric solutions existence
  • 相关文献

参考文献7

  • 1李勇,尹景学.具奇性广义平均曲率方程的径向对称解[J].数学年刊(A辑),2000,1(4):483-490. 被引量:1
  • 2Kusano T, Swanson C A. Radical Entire Solutions of a Class of Quasilinear Elliptic Equations [ J ]. J Differential Equations, 1990, 83(2) : 379-399.
  • 3Kusano T, Ogota A, Usami H. On the Oscillation of Solutions of Second Order Quasilinear Ordinary Differential Equations [J]. Hiroshima Math J, 1993, 23(3) : 645-667.
  • 4Peletier L A, Serrin J. Ground States for the Prescibed Mean Curvature Equation [ J]. Proc Amer Math Soc, 1987, 100 : 694-700.
  • 5Bonheure D, Habets P, Obersnel F, et al. Classical and Non-classical Solutions of a Prescribed Curvature Equation [ J ]. J Differential Equations, 2007, 243 ( 2 ) : 208-237.
  • 6Patrick Habets. Multiple Positive Solutions of a One-dimensional Prescribed Mean Curvature Problem [J]. Communications in Contemporary Mathematics, 2007, 9(5 ) : 701-730.
  • 7Bereanu C, Mawhin J. Existence and Multiplicity Results for Some Nonlinear Problems with Singular φ-Laplacian [ J ] J Differential Equations, 2007, 243 (2) : 536-557.

二级参考文献1

  • 1Ni W M,Commun Pure Appl Math,1986年,39卷,379页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部