期刊文献+

利用小波方差进行原子钟频率稳定度的估计

The Estimation of Atomic Clock's Frequency Stability by Wavelet Variance
下载PDF
导出
摘要 离散小波变换可以在不同尺度上分解时间序列,而不同尺度的波动性可用小波方差来表征。从小波方差的定义入手,系统地归纳了基于极大重叠离散小波变换(MODWT)的小波方差估计方法,及其等效自由度(EDF)的实用计算方法。最后利用一个实测算例进行计算分析,并与相应的重叠阿伦方差、重叠哈达玛方差进行比较,通过实验分析可以看出小波方差可有效消除原子钟信号非线性和非平稳性的影响,通过选择适当的小波基函数,如D4、D6小波,其方差可以像哈达玛方差一样,减少调频闪变噪声和调频随机游走噪声的泄露,适用于原子钟频率稳定度的表征。 The discrete wavelet transform can be used to decompose a time series at different scales, the properties of which can then be summarized by the wavelet variance. First starts with the definition of Wavelet variance, then presents the the estimation formula of wavelet variance based on the MODWT, and the practical computing methods of EDF. By using a numercial example, the estimated values and equivalent degree of freedom of overlapping Allan variance and overlapping Hadamard variance are compared with those of wavelet variance in the end. From that can get some useful conclusions. Wavelet variance put a curb on the influence of atomic clock signal's nonlinear and non-stationary process. By choosing wavelet basis function rationally, D4 and D6 wavelet variance just as Hadamard variance can decrease both the leakage of FM flicker noise and random walk noise,and is suitable to present the frequency stability of atomic clock.
出处 《宇航计测技术》 CSCD 2009年第1期46-50,共5页 Journal of Astronautic Metrology and Measurement
关键词 原子钟 小波方差 +极大重叠离散小波变换 频率稳定度 +等效自由度 Atomic Clock Wavelet variance ^+MODWT Frequency stability ^+ EDF
  • 相关文献

参考文献6

  • 1张慧君,李孝辉,边玉敬.用总方差进行频率稳定度的估计[J].时间频率学报,2003,26(1):48-53. 被引量:5
  • 2李孝辉.原子时的小波分解算法[D].中国科学院陕西天文台硕士学位论文,2006.
  • 3[美]珀西瓦尔(D.B.Percival)等著,程正兴等译.时间序列分析的小波方法[M].北京:机械工业出版社,2006.
  • 4Ke Xizheng and Wu Zhensen. On Wavelet Variance. 1997 IEEE international frequency control symposium, 1997.
  • 5D. A. Howe and D. B. Percival. Wavelet Variance, Allan Variance, and Leakage. IEEE transactions on instrumenta- tion and measurement, vol. 44, no. 2,1995.
  • 6W. J. Riley. Handbook of Frequency Stability Analysis, Hamilton Technical Services,2007.

二级参考文献10

  • 1[1]Gerber E A.Ballato A,Presion frequency control.New York Academic Press,1985.191~418
  • 2[2]Allan D W.Statistics of atomic frequency Standards Proc.IEEE,1966,54(2)
  • 3[3]Allan D W,Barnes J A.A modified allan variance with increased oscillator characterization ability.In Proc.35th Annu.Symp.Fre.Con.(Fort Monmouth,NJ).1981.470~474
  • 4[4]Allan D W,Weiss Marc A,Jespersen James L.A frequency domain view of time domain characterization of clocks and time and frequency distribution systems.In Proc.45th Annual Frequency Control Symposium.1991.667~678
  • 5[5]Howe D,Beard R,Greenhall C.A Total estimator of the hadamard function used for GPS operations.Proc.32nd Annual PTTI Systems and Applications Meeting,2000,28(30):255~268
  • 6[6]Howe D A.An extension of the allan variance with increased confidence at long term,In Proc.1995 IEEE Int.Freq.Cont.Symp.1995.321-329
  • 7[7]Howe D A,Lainson K J.Simulation study using a new type of sample varinace.In Proc.1995 PTTI Meeting.1995,279~290.
  • 8[8]Howe D A,Lainson K J.Effect of drift on TOTALDEV.In Proc.Intern.Freq.Cont.Symp.1996.883~889
  • 9[9]Howe D A.Methods of improving the estimation of long-term frequency variance.In proc.1997 European Frequency and Time Forum.1997.91~99.
  • 10[10]Howe D A,Greenhall C A.Total variance:a progress report on a new frequency stability characterization.In Proc.1997 PTTI Meeting.1997.39~48

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部