期刊文献+

恒虚警率PDAF的弱点状目标跟踪技术性能分析 被引量:3

PDAF based on CFAR performance comparative research in tracking dim point moving target technology
下载PDF
导出
摘要 PDAF与PDAF-AI算法广泛应用于雷达目标检测与微弱点状目标跟踪领域,两者不同之处在于PDAF-AI算法在利用目标位置、运动速率的基础上多加了目标的亮度信息通过Kalman滤波器去估计目标下一时刻的状态。PDAF-AI改变了传统PDAF算法忽略目标亮度信息的不足,它应具有更好的跟踪性能。通过对这两种算法跟踪性能的对比分析研究:带亮度的概率数据关联滤波器技术PDAF-AI总体上比传统的PDAF技术具有更好的实时跟踪性能,然而在强杂波或跟踪区域存在高亮杂波的情况下PDAF-AI的跟踪性能可能会有所下降。 PDAF and PDAF-AI are widely used in radar targets detection and tracking dim point moving target,the difference is what PDAF-AI algorithm add target's amplitude information on the basis of target's position,the moving speed to predict the state of next frame using Kalman filter.This technology has changed the shortcoming of traditional PDAF algorithm which neglects the amplitude information of the target.It should be better tracking performance than PDAF,the paper comparative analysis and research two methods of tracking performance:Probability Data Associating Filiter with the Amplitude Information(PDAF-AI) is better than traditional PDAF algorithm in real-time tracking performance on the whole.However,in certain circumstances the tracking performance of PDAF-AI will declined gradually.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第3期168-171,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60507005) 新疆维吾尔自治区教育厅高校科研计划科学研究重点资助项目(No.XJEDU2005I04~~
关键词 恒虚警率 KALMAN滤波器 PDAF-AI 点目标跟踪 Constant False Alarm Rate(CFAR) Kalman filter Probability Data Associating Filiter with the Amplitude Information(PDAF-AI) point target tracking
  • 相关文献

参考文献5

二级参考文献12

  • 1艾斯卡尔.艾木都拉,贾振红.基于时空分集理论的弱点状运动目标检测技术研究[J].通信学报,2005,26(1):120-124. 被引量:6
  • 2柳重堪.信号处理的数学方法[M].南京:东南大学出版社,1990.237-242.
  • 3S C POHLIG.Spatial-Temporal Detection of Electro-Optic Moving Targets[J].IEEE Trans.On Aerospace and Electronic System,1995,32(2):608-616.
  • 4J Y CHEN,L S REED.A detection Algorithm For Optical Targets in Clutter[J].IEEE Trans.on Aerospace and Electronic Systems,1987,23(1):46-59.
  • 5SERGEI LEONOV.Nonparametric methods for clutter removal[J].IEEE Trans.on Aerospace and Electronic Systems,2001,37(3):832-847.
  • 6Christopher G Atkeson,Andrew W Moore,Stefan Schaal.Locally Weighted Learning[DB/OL].http:\www.cc.gatech.edu/fac/Chris.Atkeson.
  • 7Y. Bar-shalom,"Tracking in the Clutter Environment with Probabilistic Data Association", Automatica, Vol. 11, 1975,451 - 460.
  • 8S. D. Blostein and H. Richardson,"A Sequential Hypothesis Testing Approach to Combined Detecction and Tracking" ,SPIE vol. 1954.
  • 9Simon Haykin, "Adaptive Filter Theory", Prentice-Hall, Inc. , 1996,302 - 337,483 - 535.
  • 10Peter Willett, Ruixin Niu, and Y. Bar - shalom," Integration of Bayes detection with target tracking", IEEE Trans. Signal processing, Vo149, No. 1, January 2001,17 - 29.

共引文献14

同被引文献35

  • 1吴锴,周建军.多传感器图像融合技术的军事应用[J].电视技术,2005,29(9):94-96. 被引量:3
  • 2周进,吴钦章.弱小目标跟踪算法性能评估的研究[J].光电工程,2007,34(1):19-22. 被引量:4
  • 3韩明.概率论与数理统计[M].上海:同济大学出版社,2007:171-180.
  • 4Kirubarajan T, Bar-shalom Y.Probabilistic data association techniques for target tracking in clutter[J].Proceedings of the IEEE, 2004,92(3) :536-557.
  • 5艾斯卡尔·艾木都拉.红外搜索跟踪系统关键技术研究[D].成都:成都电子科技大学,2004.
  • 6Smets P,Ristic B.Kalman filter and joint tracking and classification based on belief ftmctions in the TBM framework[J].Information Fusion,2007,8:16-27.
  • 7Andrew Cilia. Object tracking using cluster of elasticallylinked feature trackers [ J]. Journal of Electronic Imaging2008,17(2) : 023019 -1 -023019 -11.
  • 8Ruiming Liu, Erqi Liu, Jie Yang,et al. Automatically de-tect and track infrared small targets with kernel Fukunaga-Koontz transform and Kalman prediction [ J]. APPLIEDOPTICS, 2007 46(31) : 7780 -7791.
  • 9Cui-yun Li, Hong-bing Ji. Marginalized particle filter basedtrack-before-detect algorithm for small dim infrared target[C]//IEEE. AICI 2009: 321 -325.
  • 10HU Tao-tao, FAN Xiang, Zhang Yujin,et al. Infrared smalltarget tracking based on SOPC [ C] //SPIE. Parallel Pro-cessing for Imaging Applications, 2011, Vol. 7872 :78720U-1 -78720U -9.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部