期刊文献+

The L(3,2,1)-labeling on Bipartite Graphs

The L(3,2,1)-labeling on Bipartite Graphs
下载PDF
导出
摘要 An L(3, 2, 1)-labeling of a graph G is a function from the vertex set V(G) to the set of all nonnegative integers such that |f(u)-f(v)|≥3 if dG(u,v) = 1, |f(u)-f(v)|≥2 if dG(u,v) = 2, and |f(u)-f(v)|≥1 if dG(u,v) = 3. The L(3, 2,1)-labeling problem is to find the smallest number λ3(G) such that there exists an L(3, 2,1)-labeling function with no label greater than it. This paper studies the problem for bipartite graphs. We obtain some bounds of λ3 for bipartite graphs and its subclasses. Moreover, we provide a best possible condition for a tree T such that λ3(T) attains the minimum value. An L(3, 2, 1)-labeling of a graph G is a function from the vertex set V(G) to the set of all nonnegative integers such that |f(u)-f(v)|≥3 if dG(u,v) = 1, |f(u)-f(v)|≥2 if dG(u,v) = 2, and |f(u)-f(v)|≥1 if dG(u,v) = 3. The L(3, 2,1)-labeling problem is to find the smallest number λ3(G) such that there exists an L(3, 2,1)-labeling function with no label greater than it. This paper studies the problem for bipartite graphs. We obtain some bounds of λ3 for bipartite graphs and its subclasses. Moreover, we provide a best possible condition for a tree T such that λ3(T) attains the minimum value.
出处 《Communications in Mathematical Research》 CSCD 2009年第1期79-87,共9页 数学研究通讯(英文版)
基金 The NSF (60673048) of China the NSF (KJ2009B002,KJ2009B237Z) of Education Ministry of Anhui Province.
关键词 channel assignment problems L(2 1)-labeling L(3 2 1)-labeling bi-partite graph TREE channel assignment problems, L(2,1)-labeling, L(3, 2,1)-labeling, bi-partite graph, tree
  • 相关文献

参考文献1

二级参考文献7

  • 1J A Bondy, U S R Murty. Graph theory with applications[M]. New Yrok: North Holland, 1976.
  • 2Gerard J Chang, David Kuo. The L( 2,1)- labeling problem on graphs[J]. SIAM J. Discrete Math. , 1996,2(2) :309-316.
  • 3M B Cozzens,F S Roberts. T-Colorings of graphs and the channel assignment problem[J]. Congr. Numer,1982,35(2) :191-208.
  • 4Jerrold R Griggs, Roger K Yeh. Labeling graphs with a condition at distance 2 [J].SIAM J. Discrete Math. , 1992,5(2):586-595.
  • 5W K Hale. Frequency assignment: Theory and applications[J], in Proc. IEEE, 1980,68(2) : 1497- 1514.
  • 6Harary. Graph Theory[M], MA: Addison-Wesley, Reading, 1969.
  • 7F S Roberts. T-colorings of graphs: Recent results and open problems,Discrete Math.[J], 1991,93(2) :229 -245.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部