摘要
给出了紧凸集上的连续的仿射算子或线性算子的积分表示定理,并证明了连续仿射算子的范数在紧凸集的端点集上可达.从而推广了Choquet定理并加深了对端点集的边界特性的刻画.
The paper establishes an integral representation theorem about the continuous affine or linear operators on a compact convex set, and proves that nouns of continuous affine operators are obtainable on the extreme points set of a compact convex set. Therefore, it extends Choquet's theorem and gets a deeper characterization of a boundary property for the extreme points sets.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
1998年第1期64-66,共3页
Journal of Tongji University:Natural Science
关键词
紧凸集
端点集
积分表示
算子
Compact convex set
Extreme points set
Inegral representation