期刊文献+

RESEARCH ON THE WATER-RESISTANCE OF MAGNESIUM OXYCHLORIDE CEMENT——I:THE STABILITY OF THE REACTION PRODUCTS OF MAGNESIUM OXYCHLORIDE CEMENT IN WATER 被引量:9

RESEARCH ON THE WATER-RESISTANCE OF MAGNESIUM OXYCHLORIDE CEMENT I: THE STABILITY OF THE REACTION PRODUCTS OF MAGNESIUM OXYCHLORIDE CEMENT IN WATER
下载PDF
导出
摘要 In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable in water and can be changed into Mg(OH)2 by the action of water, which causes the content of 5 phase or 3 phase to be less and less,the content of Mg(OH)2 to be more and more and the strength to be the lower the lower,after hardended MOC paste was immersed in water. The change of 5 pliase and 3 phase into Mg(OH)2 is not a dissolve process, but a hydrolysis process. The hydrolysis products of 5 phase and 3 phase are Mg(OH)2 precipitation and soluble Cl-,AIg+ ions and H2O. The hydrolysis is sponta-neous thermodynamically and its chemical kinatic equation is C = C,,e-k Thus .it is suggested that only by enhancing the stability of 5 phase or 3 phase in water and preventing 5 phase or 3 phase from the hydrolyzing can the water resistance of MOC be improved well. In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable in water and can be changed into Mg(OH)2 by the action of water, which causes the content of 5 phase or 3 phase to be less and less,the content of Mg(OH)2 to be more and more and the strength to be the lower the lower,after hardended MOC paste was immersed in water. The change of 5 pliase and 3 phase into Mg(OH)2 is not a dissolve process, but a hydrolysis process. The hydrolysis products of 5 phase and 3 phase are Mg(OH)2 precipitation and soluble Cl-,AIg+ ions and H2O. The hydrolysis is sponta-neous thermodynamically and its chemical kinatic equation is C = C,,e-k Thus .it is suggested that only by enhancing the stability of 5 phase or 3 phase in water and preventing 5 phase or 3 phase from the hydrolyzing can the water resistance of MOC be improved well.
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1994年第3期51-59,共9页 武汉理工大学学报(材料科学英文版)
关键词 magnesitt籭. oxychloride cement stability of the reaction products water resistance hydrolysis. magnesitt籭. oxychloride cement stability of the reaction products water resistance hydrolysis.
  • 相关文献

同被引文献56

引证文献9

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部