期刊文献+

Linear free energy relationships between reaction rate constants and equilibrium constants of complex compounds——III. Kinetics and mechanisms of ternary complex formation between (5-X-1, 10-phenanthroline)copper(II) and threonine 被引量:1

Linear free energy relationships between reaction rate constants and equilibrium constants of complex compounds——III. Kinetics and mechanisms of ternary complex formation between (5-X-1, 10-phenanthroline)copper(II) and threonine
全文增补中
导出
摘要 The kinetics of ternary complex formation involving Cu(5-X-1, 10-phen) and threonine (CuAL, A=5-X-1, 10-phen; L=threonine or represented by O-N; X=NO_2, Cl, H, CH_3) has been studied by temperature-jump and stopped-flow methods. The formation rate constants, k_f(M^(-1).s^(-1)), for the complexation reaction, CuA + LCuAL, are as follows; X=NO_2, 8.68×10~8; X=Cl, 7.13×10~8; X=H, 6.12×10~8; X=CH_3, 5.42×10~8. The rate constants for zwitterion attack are nil within experimental error. It has been found that a linear free energy relationship exists between the stability(logK_(CuAL)^(CuA) of the complexes CuAL and log kf as follows: IogK_(CuAL)^(CuA)=0.13 + 0.83 logk_f, r=0.99. It suggested that the formation rate governed the stability of the ternary complexes. The rates of formation of the ternary complexes increased with decreasing electron-donating property of the substituents. A linear relationship was found to exist as expressed by the following equation: log(k_f^R/k_F^O) = 0.097σ, r=0.96. A mechanism involves a rapid equilibrium between CuA and L followed by a slow ring closure of L. The kinetics of ternary complex formation involving Cu(5-X-1, 10-phen) and threonine (CuAL, A=5-X-1, 10-phen; L=threonine or represented by O-N; X=NO_2, Cl, H, CH_3) has been studied by temperature-jump and stopped-flow methods. The formation rate constants, k_f(M^(-1).s^(-1)), for the complexation reaction, CuA + LCuAL, are as follows; X=NO_2, 8.68×10~8; X=Cl, 7.13×10~8; X=H, 6.12×10~8; X=CH_3, 5.42×10~8. The rate constants for zwitterion attack are nil within experimental error. It has been found that a linear free energy relationship exists between the stability(logK_(CuAL)^(CuA) of the complexes CuAL and log kf as follows: IogK_(CuAL)^(CuA)=0.13 + 0.83 logk_f, r=0.99. It suggested that the formation rate governed the stability of the ternary complexes. The rates of formation of the ternary complexes increased with decreasing electron-donating property of the substituents. A linear relationship was found to exist as expressed by the following equation: log(k_f^R/k_F^O) = 0.097σ, r=0.96. A mechanism involves a rapid equilibrium between CuA and L followed by a slow ring closure of L.
出处 《Acta Chimica Sinica English Edition》 SCIE CAS CSCD 1989年第4期342-348,共1页
  • 相关文献

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部