期刊文献+

卡尔曼/粒子滤波器在船用组合导航中的应用 被引量:1

Kalman/particle Filter Applied in Integrated Navigation
下载PDF
导出
摘要 采用将全球定位系统GPS(Global Positioning System)与捷联惯性导航系统SINS(Strapdown Inertial Navigation System)进行组合导航的方式,组合后系统性能将优于GPS或SINS单独使用时的任一系统。介绍了基本粒子滤波器算法原理并对卡尔曼/粒子组合滤波器在船用GPS/SINS组合导航中的实现形式及算法特点进行了研究。仿真结果表明,对于船用SINS/GPS组合导航问题,卡尔曼/粒子组合滤波器能够获得较高的滤波精度,满足实际船用导航要求。 An integrated GPS (Global Positioning System)/SINS (Strapdown Inertial Navigation System) navigation system is presented in this paper. The integration of GPS and SINS, therefore, provides a navigation system that has superior performance in comparison with either a GPS or a SINS stand-alone system. The principle of Particle filter is proposed in this paper. A description of Kalman/particle combined filter algorithm applied in integrated navigation system for watercraft navigation is given, including its implementation and algorithm characters. The simulation has demonstrated that good results in SINS/GPS filtering accuracy could be obtained by applying Kalman/particle combined filter, which satisfying the practical demand for watercraft navigation.
出处 《舰船电子工程》 2009年第4期59-63,共5页 Ship Electronic Engineering
基金 973计划课题(编号:2009CB724002)资助 教育部新世纪人才支持计划项目(编号:NECT-06-0462)资助 船舶支撑计划项目(编号:6922001029)资助
关键词 组合导航 卡尔曼/粒子组合滤波器 蒙特卡罗方法 贝叶斯估计 integrated navigation, Kalman/particle combined filter, Monte Carlo methods, Bayesian filter
  • 相关文献

参考文献2

二级参考文献14

  • 1Doucet A,N de Freitas,Gordon N.Sequential monte carlo methods in practice[M].Springer-Verlag,2001.
  • 2Gordon N J.A hybrid bootstrap filter for target tracking in clutter[J].IEEE Transactions on Aerospace and Electronic Systems[C],1997,33(3):353-358.
  • 3Doucet A,Godsill S,Andrieu C.On sequential monte carlo sampling methods for bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
  • 4J S Liu,R Chen.Sequential Monte Carlo methods for dynamic systems[J].J.Amer.Statist.Assoc.,1998,93 (443):1032-1044.
  • 5Fredrik Gustafsson,Fredrik Gunnarsson,Niclas Bergman,et al.Particle filters for positioning,navigation and tracking[J].IEEE Transactions on Signal Processing,2002,50(2):425-437.
  • 6Arulampalam M S,Maskell S,Gordon N.A tutorial on particle filters for online nonlinear/non-nonlinear/non-Gaussian Bayesian tracking[A].IEEE Transactions on Signal Processing[C],2002,50(2):174-188.
  • 7Dan Crisan,Arnaud Doucet.A survey of convergence results on particle filtering methods for practitioners[J].IEEE Transactions on Signal Processing,2002,50(3):736-746.
  • 8Carvalho H,Del Moral P,Monin A,Salut G.Optimal nonlinear filtering in GPS/INS integration[A].IEEE Transactions on Aerospace and Electronic Systems[C],1997,33(3):835-849.
  • 9Dmitriyev S P,Stepanov O A,Shepel S A.Nonlinear filtering methods application in ins alignment[A].IEEE Transactions on Aerospace and Electronic Systems[C],1997,33(1):260-272.
  • 10Rickard Karlsson,Thomas Sch(o)n,Fredrik Gustafsson.Complexity analysis of the marginalized particle filter[M/OL].Http://www.control.isy.liu.se/publications.

共引文献2

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部