期刊文献+

轴对称弹性应变梯度理论公式推导及有限元实现 被引量:1

Formula derivation in axisymmetric strain gradient theory and finite element implementation
下载PDF
导出
摘要 用张量运算推导了弹性应变梯度轴对称问题的基本公式。建立了应变梯度轴对称不协调元的弱连续条件,进一步建立了满足弱连续条件的应变梯度轴对称18-DOF三角形单元(BCIZ+ART9),其中BCIZ满足线性应变C0连续,用于计算应变ε;ART9满足常曲率C1弱连续,用于计算应变梯度η。数值结果表明该单元通过C0-1分片检验并能体现材料的尺度效应。 This paper deals with the basic functions of axisymmetric strain gradient theory. A weak continuity condition, which assured the axisymmetric strain gradient element convergent is proposed. And an 18-DOF axisymmetrie refined nonconforming triangular element (BCIZ+ARTg)is derived. The displacement function of the thin plate triangular element BCIZ, which can pass the C^0 linear stress patch test, is used to calculate strain ε. And the element function of the refined element ARTg, which is derived from BCIZ and satisfies the interelement C^1 weak continuity conditions, is used to calculate the strain gradient η. Numerical results show that the element can reflect the scale effects of strain gradient and pass C^0-1 patch test.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2009年第2期209-214,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(50479058,10672032)资助项目
关键词 应变梯度理论 C^1弱连续 轴对称单元 C^0-1分片检验 strain gradient theory C^1 weak continuity axisymmetric element C^0-1 patch test
  • 相关文献

参考文献11

  • 1STOLKEN J S, EVANS A G. A microbend test method for measuring the plasticity length scale[J]. Acta Metallurgica et Materials, 1998, 46: 5109- 5115.
  • 2COSSERAT E. The orie des Corps Deformables [M]. Paris: A. Hermann et Fils, 1909.
  • 3FLECK N A, HUTCHINSON J W. Strain gradient plasticity[J]. Adv Appl Mech , 1997,33:295-361.
  • 4GAO H, HUANG Y, NIX W D, et al. Mechanism-based strain gradient plasticity-Ⅰ, theory[J]. J Mech Phys Solids, 1999,47 : 1239-1263.
  • 5GAO H, HUANG Y, NIX W D, et al. Mechanism-based strain gradient plastieity-Ⅱ, theory [J]. J Mech Phys Solids, 2000,48:99-128.
  • 6CHEN S H, WANG T C. A new deformation theory with strain gradient effects[J]. Int J of Plasticity, 2002,18:971-995.
  • 7ZERVOS A, PAPANASTASIOU P, VARDOULAKIS I. Modelling of loealisation and scale effect in thick-walled cylinders with gradient elastoplasticity[J]. Int J Solids Strut, 2001,38:5081-5095.
  • 8SHU J Y, FLECK N A. The prediction of a size effect in micro-indentation[J]. Int J Solids Struct, 1998,35(13) : 1363-1383.
  • 9AI-KAH, CHEN WANJI. Finite element formulations of strain gradient theory for mierostructures and the C^0-1 patch test[J]. Int J Number Methods Eng, 2004,61 : 433-454.
  • 10BAZELEY G P, CHEUNG Y K, IRONS B M. Triangular element in bending conforming and non-conforming solution[A]. Proc Conf Matrix Methods in Structural Mechanics, Air Force Ins Tech [C]. Wright-Patterson A F Base, Ohio, 1965. 547-576.

同被引文献26

  • 1陈万吉.应变梯度理论有限元:C^(0-1)分片检验及其变分基础[J].大连理工大学学报,2004,44(4):474-477. 被引量:12
  • 2王忠昶,栾茂田,杨庆.基于不同权函数的非局部理论对比分析[J].西安交通大学学报,2006,40(11):1348-1351. 被引量:2
  • 3Muhlhaus HB, Vardoulakis I. The thickness of shear bands in granular materials.Geotechnique, 1987, 37:271-283.
  • 4Stolken JS, Evans AG. A microbend test method for measuring the plasticity length scale. Acta Metallurgica et Materialia, 1998, 46:5109-5115.
  • 5Kouzeli M, Mortensen A. Size dependent strengthening in particle reinforced aluminium. Acta Metallurgica et Materialia, 2002, 50:39-51.
  • 6Cosserat E, Cosserat F. Theorie Des Corp Deformables. Paris: Herman, 1909.
  • 7Toupin R. Elastic materials with couple-stresses. Arch Rational Mech Anal, 1962, 11:385-414.
  • 8Mindlin RD. Influence of couple-stress on stress concentrations. Experimental Mechanics, 1963, 3:1-7.
  • 9Fleck NA, Muller GM, et al. Strain gradient plasticity: theory and experiment. Acta Metallurgiea et Materialia, 1994, 42:475-487.
  • 10Fleck NA, Hutchinson JW. Strain gradient plasticity. Adv Appl Mech, 1997, 33:295-361.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部