期刊文献+

基于二分图低密度奇偶校验码围长计算方法 被引量:1

An Algorithm for Checking Girth of Low Density Parity Check Codes in Bipartite Graphs
下载PDF
导出
摘要 对于任意给定的低密度奇偶校验(LDPC)码,快速计算其围长具有重要意义。通过对基于二分图LDPC码围长计算方法进行研究,提出了一种快速计算围长并能给出各校验节点(或信息节点)上经过的最短环个数的算法。通过MATLAB仿真测试表明,该算法对于PEGReg504x1008这样大规模的LDPC码H矩阵,只需2.876s即可计算出该码的围长和各校验节点上经过的最短环个数,更说明该算法具有快速计算围长的能力。 The girth is an indication of the quality of Low Density Parity Check(LDPC) Codes. For any given LDPC Codes, quickly checking their girths is of some important significance. An algorithm for quickly checking the girth of LDPC Codes in bipartite graphs is presented. This algorithm can also give out the numbers of the shortest cycles passing through the given check node (or bit node). The testing result of this algorithm implemented in MATLAB shows that, even for large-scale Hmatrix of LDPC Codes like PEGReg504x1008, it takes only 2.876 s for the algorithm to finish checking.
出处 《信息与电子工程》 2009年第2期119-122,共4页 information and electronic engineering
关键词 低密度奇偶校验码 围长 二分图 病态路径 Low Density Parity Check girth bipartite graph morbid path
  • 相关文献

参考文献1

二级参考文献8

  • 1[1]Gallager R G.Low-density parity-check codes[M].MA:MIT Press,1963.
  • 2[2]MacKay D J C,Neal R M.Near Shannon Limit Performance of Low-Density Parity-Check Codes[J].Electronic,Lett.,1996,32(18):1645-1646.
  • 3[3]Sae-Yong Chung,G David Forney Jr,Thomas J Richardson,et al.On the Design of Low-Density Parity-Check Codes within 0.0045dBof Shannon Limit[J].IEEE Communications Letters,2001,5(2):58-60.
  • 4[4]Futaki H,Ohtsuki T.Low-Density parity-check(LDPC) coded OFDM systems with M-PSK[C]// IEEE VTC2002,2002:1035-1039.
  • 5[7]MacKay D J C.Good Error-Correcting Codes based on very Sparse Matrices[J].IEEE Trans.Inform Theory,1999,45(5):399-431.
  • 6[8]Ungerboeck G Trellis.Codes Modulation with Redundant Signal State Sets Part 2:State of the Art[J].IEEE Communications Magazine,1987(2):12-21.
  • 7[9]Limpaphayom P,Kim A Winick.Power-and-Bandwidth-Efficient Communications Using LDPC Codes[J].IEEE Trans.On Communication,2004(3):350-354.
  • 8[10]Hagenauer J,Hoeher P.A vierbi algorithm with soft-decision outputs and its applications[C]// Proc IEEE GLOBECOM'89,1989,3:1680-1686.

共引文献2

同被引文献11

  • 1李建中,等.图论导引[M].北京:机械工业出版社,2006.
  • 2赵晓群.现代编码理论[M].武汉:华中科技大学出版社.2007:165.
  • 3MACKAY D J C, NEAL R M. Near shannon limit performance of low-density parity-check codes[ J]. Electron Letter, 1996, 32(18) :1645 - 1646.
  • 4SHANNON C E. A mathematical theory of communication[ J]. The Bell System Technical Journal, 1948, 27:379 -423.
  • 5CHUNG, S Y, FORNEY G D, RICHARDSON T J, et al. On the design of low-density parity check codes within 0. 0045 dB of the Shannon limit[ J]. IEEE Communication Letters, 2001,5(2) : 58 - 60.
  • 6FAN JUN, XIAO YANG. A method of counting the number of cycles in LDPC codes[ C]//2006 8th International Conference on Signal Processing. Washington: IEEE Computer Society,2006:2183 -2186.
  • 7殷剑宏,吴开亚.图论及其算法[M].合肥:中国科学技术大学出版社,2006.
  • 8MACKAY. D J C. Encyclopedia of sparse graph codes[ EB/OL]. [2012 -04 - 15]. http://www, inference. Phy. cam. ac. uk/mackay/codes/data, html.
  • 9王战红,孙明明,姚瑶.Dijkstra算法的分析与改进[J].湖北第二师范学院学报,2008,25(8):12-14. 被引量:17
  • 10李博,王钢,杨洪娟,魏民.一种LDPC码双向图环路检测新算法[J].哈尔滨工业大学学报,2010,42(7):1051-1055. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部