期刊文献+

基于遗传粒子群算法的冷连轧轧制规程优化设计 被引量:9

Optimization of Rolling Schedule in Tandem Cold Mills Based on GAPSO Algorithm
下载PDF
导出
摘要 选取等相对负荷为轧制规程的目标函数,令轧制力、轧制功率、轧制力矩、轧制速度等参数满足一定约束条件,采用罚函数法将有约束条件转为无约束条件。用遗传粒子群算法对目标函数进行优化,求得最优解。该混合算法集合了遗传算法全局搜索能力强,粒子群算法局部搜索能力强,收敛速度快的特点。使得各机架功率合理分配,设备能力充分发挥,生产效率提高。 This paper adopts equal relatively load as objective function, makes the rolling force, rolling power, rolling torque,speed and other parameters to meet certain restrictive conditions. SUMT algorithm is used to change constraints to non-binding conditions. GAPSO algorithm is applied to optimize the objective function to obtain the optimal solution. This hybrid algorithm takes both advantage of GA and PSO algorithm, integrates global searching ability with high convergence speed. It makes the reasonable distribution of tandem cold rolling power,gives full play to equipment capacity and improves the production efficiency.
出处 《轧钢》 北大核心 2009年第1期22-25,共4页 Steel Rolling
关键词 冷连轧 轧制规程优化 遗传粒子群算法 罚函数 tandem cold rolling rolling schedule optimization GAPSO SUMT
  • 相关文献

参考文献2

二级参考文献10

  • 1HongshuangDI,JianzhongXU,DianyaoGONG,XianghuaLIU,GuodongWANG,XiaomingHE,LiyingBA.Effect of Load Distribution on Strip Crown in Hot Strip Rolling[J].Journal of Materials Science & Technology,2004,20(3):330-334. 被引量:1
  • 2马丽坤,袁卫华,韩斌,王君,王国栋.人工神经网络方法预报热轧带钢的卷取温度[J].轧钢,2005,22(1):14-16. 被引量:3
  • 3王建辉,徐林,闫勇亮,顾树生.改进粒子群算法及其对热连轧机负荷分配优化的研究[J].控制与决策,2005,20(12):1379-1383. 被引量:27
  • 4常安,邸洪双,佟强,白金兰,阳代军.BP神经网络的弯辊力预设定优化[J].轧钢,2006,23(5):55-57. 被引量:7
  • 5Liu Z Y,Wang W D,Gao W.Prediction of the Mechanical Properties of Hot-rolled C-Mn Steels Using Artificial Neural Networks[J].Journal of Materials and Processing Technology,1996,57:332-336.
  • 6Yoshida H,Kawata K,Fukuyama Y,et al.A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Security Assessment[J].IEEE Trans on Power Systems,2000,15 (4):1232-1239.
  • 7Korczak P,Dyja H,Labuda E.Using Neural Network Models for Predicting Mechanical Properties after Hot Plate Rolling Processes[J].Journal of Materials and Processing Technology,1998,80-81:481-486.
  • 8Malinov S,Sha W,Mckeown J J.Modeling the Correlation between Processing Parameters and Properties in Titanium Alloys Using Artificial Neural Network[J].Computational Material Science,2001,21 (3):375-394
  • 9Kennedy J,Eberhart R.Particle Swarm Optimization[A].IEEE International Conference on Neural Networks[C].Piscataway,NJ:IEEE Service Center press,1995.1942-1948.
  • 10Shi Y,Eberhart R C.Particle Swarm Optimization:Developments,Applications and Resource[A].Proc of Congress on Evolutionary Computation[C],Piscataway,NJ:IEEE Service Center press,2001.81-86.

共引文献17

同被引文献103

引证文献9

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部