期刊文献+

一类部分信息的随机控制问题的极值原理(英文)

A Maximum Principle for a Class of Stochastic Control Problems with Partial Information
下载PDF
导出
摘要 在本文中,我们证明了一类部分信息的随机控制问题的极值原理的一个充分条件和一个必要条件.其中,随机控制问题的控制系统是一个由鞅和Brown运动趋动的随机偏微分方程. In this paper,we prove a sufficient and necessary condition of stochastic maximum principle for a stochastic optimal control problem with partial information,whose controlled system is a stochastic partial differential equation driven by a series of martingales and an independent Brownian motion.
作者 冉启康
出处 《应用数学》 CSCD 北大核心 2009年第2期421-429,共9页 Mathematica Applicata
基金 Supported by the Academic Discipline Program,211 Project for Shanghai University of Finance and Economics(the 3rd phase) the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (708040)
关键词 倒向随机偏微分方程 跳时间 随机最优控制问题 部分信息 Backward stochastic partial differential equations (BSPDEs) Jumping times Stochastic optimal control problem Partial information
  • 相关文献

参考文献16

  • 1Fouzia Baghery,Bernt φksendal. A maximum principle for stochastic control with partial information[J]. Stochastic Analysis and Applications, 2007,25:705-717.
  • 2Bahlali K, Eddahbi M, Essaky E. BSDE associated with Levy processes and application to PDIE[J]. Journal of Applied Mathematics and Stochastic Analysis, 2003,16 (1) : 1-17.
  • 3Bernt φksendal, Frank Proske, Zhang Tusheng. Backward stochastic differential equations with jumps and application to optimal control of random jump fields[J]. Stochastics, 2005,77:381-399.
  • 4Nualart D,Schoutens W. Chaotic and predictable representations for Levy processes[J]. Stoc, Proc. Appl. ,2000,90(1):109-122.
  • 5Yong Jiongmin, Zhou Xunyu. Stochastic Controls-Hamiltonian Systems and HJB Equations[M]. New York: Springer-Verlag, 1999.
  • 6Framstad N C,φksendal B, Sulem A. Sufficient stochastic maximumprineiple for the optimal control of jump diffusions and applications to finance[J]. J. Optim. Theory and Appl. ,2004,121:77-98.
  • 7Tang S. The maximum principle for partially observed optimal control of stochastic differential equations [J]. SIAM J. Control Optimi. , 1998,36(5) : 1596-1617.
  • 8Dellacherie C, Meyer P A. Probabilites et Potentiel. Chap. Ⅴ-Ⅷ[M]. Paris: Hermann, 1980.
  • 9Lφkka A. Martingale representation, chaos expansion and Clark-Ocone formulas[EB/OL].http://www. maphysto.dk/publications/MPS-RR/1999/22.pdf.
  • 10Pardoux E, Peng S. Backward SDEs and quasilinear PDEs[A]. Rozovskii B L , Sowers R. Stochastic Partial Differential Equations and their Applications[C]. Sci. 1992,176:200-217.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部