期刊文献+

Approximate Symmetries and Infinite Series Symmetry Reduction Solutions to Perturbed Kuramoto-Sivashinsky Equation 被引量:2

Approximate Symmetries and Infinite Series Symmetry Reduction Solutions to Perturbed Kuramoto-Sivashinsky Equation
下载PDF
导出
摘要 Starting from Lie symmetry theory and combining with the approximate symmetry method, and using the package LieSYMGRP proposed by us, we restudy the perturbed Kuramoto-Sivashinsky (KS) equation. The approximate symmetry reduction and the infinite series symmetry reduction solutions of the perturbed KS equation are constructed. Specially, if selecting the tanh-type travelling wave solution as initial approximate, we not only obtain the general formula of the physical approximate similarity solutions, but also obtain several new explicit solutions of the given equation, which are first reported here.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第5期785-788,共4页 理论物理通讯(英文版)
基金 The project supported by National Natural Science Foundations of China under Grant Nos. 10735030, 10475055, and 90503006; the Natural Science Research Plan in Shaanxi Province under Grant No. SJ08A09; the Research Fund of Postdoctoral of China under Grant No. 20070410727;the Research Found of Shaanxi Normal University
关键词 perturbed Kuramoto-Sivashinsky equation approximate symmetry reduction series reduction solution 对称性理论 无穷级数 解方程 摄动 级数解 堪萨斯州 物理公式 行波解
  • 相关文献

参考文献9

  • 1Y. Kuramoto, et al., Prog. Theor. Phys. 55 (1976) 356.
  • 2G.I. Sivashinsky, Acta Astraunautica 4 (1977) 1177.
  • 3D.J. Benney, J. Math. Phys. (N.Y.) 45 (1966) 150.
  • 4C. Misbah, et al., J. Phys. (France) I 1 (1991) 585.
  • 5I. Bena, et al., Phys. Rev. B 47 (1993) 7408.
  • 6P. Manneville, in Progagation in Systems far From Equilibrium, eds. J.E. Wesfreid, H.R. Brand, P. Manneville, G. Albinet, and N. Boccara, Springer-Verlag, Berlin (1988).
  • 7Chaouqi Misbah, et al., Phys. Rev. E 49 (1994) 166.
  • 8W.I. Fushchich, et al., J. Phys. A: Math. Gen. 22 (1989) L887.
  • 9R.X. Yao, et al., Chin. Phys. Lett. 25 (2008) 1927.

同被引文献16

  • 1JIAO XiaoYu1,GAO Yuan1 & LOU SenYue1,2,3 1 Department of Physics,Shanghai Jiao Tong University,Shanghai 200240,China,2 Department of Physics,Ningbo University,Ningbo 315211,China,3 School of Mathematics,Fudan University,Shanghai 200433,China.Approximate homotopy symmetry method:Homotopy series solutions to the sixth-order Boussinesq equation[J].Science China(Physics,Mechanics & Astronomy),2009,52(8):1169-1178. 被引量:8
  • 2KURAMOTO Y, TSUZUKI T. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium[ J]. Progress of The- oretical Physics, 1976, 55 (2) : 356 - 369.
  • 3KURAMOTO Y. Diffusion-induced chaos in reaction systems[ J ]. Progress of Theoretical Physics Supplement, 1978, 64:346 -367.
  • 4SIVASHINSKY G I. Nonlinear analysis of hydrodynamic instability in laminar flames (I) -Derivation of basic equations [ J ]. Acta Astronautica, 1977, 4(11) : 1177-1206.
  • 5SIVASHINSKY G I. On flame propagation under conditions of stoichiometry[ J]. SIAM Journal on Applied Mathematics, 1980, 39( 1 ) : 67 - 82.
  • 6GUO B L. Some problems of the generalized Kuramoto-Sivashinsky type equations with dispersive effects[ M]. Berlin: Springer, 1990:236 -241.
  • 7BRUZON M S, GANDARIAS M L, CAMACHO J C. Classical and nonclassical symmetries for a Kuramoto-Sivashinsky equation with dispersive effects [ J ]. Mathematical Methods in the Applied Sciences, 2007, 30 (16) : 2091 - 2100.
  • 8ZHANG Z Y, CHEN Y F. Classical and nonclassical symmetries analysis for initial value problems [ J ]. Physics Letters A, 2010, 374 (9) : 1117 - 1120.
  • 9CIMPOIASU R, CIMPOIASU V, CONSTANTINESCU R. Classical and non-classical symmetries for the 2D-Kuramoto-Sivashinsky model[ J]. Physics AUC, 2008, 18 : 214 - 218.
  • 10NADJAFIKHAH M, AHANGARI F. Lie symmetry analysis of the two-dimensional generalized Kuramoto-Sivashinsky equation[J]. Mathematical Sciences, 2012, 6(1): 1 -7.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部