摘要
The high rolling speed of a missile heavily affects the stabilizing capability of the inertial platform in the laser tracking system (LTS) of the missile. In this paper, a rotational stabilizing platform (RSP) and a fuzzy-PID controller is designed to stabilize the inertial platform. This controller integrates the advantages of both fuzzy controller and classic PID controller. A comparison study is carried out to illustrate the advantages of the proposed fuzzy-PID controller over the classic PID controller. Numerical results indicate that the fuzzy-PID controller outperforms the classic one in effectively handling nonlinear disturbances and quickly stabilizing the inertial platform at the sudden change of missile roiling speed.
The high rolling speed of a missile heavily affects the stabilizing capability of the inertial platform in the laser tracking system (LTS) of the missile. In this paper, a rotational stabilizing platform (RSP) and a fuzzy-PID controller is designed to stabilize the inertial platform. This controller integrates the advantages of both fuzzy controller and classic PID controller. A comparison study is carried out to illustrate the advantages of the proposed fuzzy-PID controller over the classic PID controller. Numerical results indicate that the fuzzy-PID controller outperforms the classic one in effectively handling nonlinear disturbances and quickly stabilizing the inertial platform at the sudden change of missile rolling speed.
基金
the China Aerospace Science and Innovation Foundation(No. 06CASC0407)