期刊文献+

Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm 被引量:17

Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm
原文传递
导出
摘要 A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS. A grating eddy current displacement sensor (GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions. The parameters optimization of the sensor is essential for economic and efficient production. This paper proposes a method to combine an artificial neural network (ANN) and a genetic algorithm (GA) for the sensor parameters optimization. A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS, and then a GA is used in the optimization process to determine the design parameter values, resulting in a desired minimal nonlinearity error of about 0.11%. The calculated nonlinearity error is 0.25%. These results show that the proposed method performs well for the parameters optimization of the GECDS.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第8期1205-1212,共8页 浙江大学学报(英文版)A辑(应用物理与工程)
关键词 Grating eddy current displacement sensor (GECDS) Artificial neural network (ANN) Genetic algorithm (GA) Parameters optimization Nonlinearity error 电涡流位移传感器 人工神经网络 参数优化 遗传算法 非线性分析 光栅 非线性误差 神经网络模型
  • 相关文献

参考文献3

二级参考文献10

共引文献25

同被引文献105

引证文献17

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部