期刊文献+

一个包含Z(n)和D(n)函数的方程及其它的正整数解 被引量:1

An equation involving the functions Z(n) and D(n) and its all positive integer solutions
下载PDF
导出
摘要 对于任意正整数n,著名的伪Smarandache函数Z(n)定义为最小的正整数m使得n|m(m+1)/2.而数论函数D(n)定义为最小的正整数m使得n|d(1)d(2)d(3)…d(m),其中d(n)为Dirichlet除数函数.本文的主要目的是利用初等方法研究一类包含伪Smarandache函数Z(n)和数论函数D(n)的方程2Z(n)=D(n)的可解性,并获得了该方程的所有正整数解. For any positive integer n, the famous pseudo Smarandache function Z(n) is defined as the smallest positive integer m such that n | m(m+ 1)/2. The number theory function D(n) is defined as the smallest positive integer m such that n divides d(1)d(2). …… d(m), where d(n) is the Dirichlet divisor function. The main purpose of this paper is using the elementary method and the properties of the pseudo Smarandache function Z(n) and number theory function D(n) to study the solvability of the equation 2^z(n) = D(n), and obtain its all positive integer solutions.
作者 葛键
出处 《纯粹数学与应用数学》 CSCD 2009年第3期622-624,共3页 Pure and Applied Mathematics
基金 国家自然科学基金(10671155) 陕西省教育厅自然科学基金(08JK291)
关键词 伪smarandache函数Z(n) 函数D(n) 初等方法 方程 正整数解 the pseudo Smarandache function Z(n), function D(n), elementary method, equation, positive integer solutions
  • 相关文献

参考文献9

  • 1Smarandache F. Only Problems, Not Solutions[M]. Chicago: Xiquan Publishing House, 1993.
  • 2Lou Yuanbing. On the pseudo the Smarandache function [J]. Scientia Magna, 2007,3(4):48-50.
  • 3Le Maohua. Two functional equations[J]. Smarandache notions journal, 2004,14:180-182.
  • 4张文鹏.关于F.Smarandache函数的两个问题[J].西北大学学报(自然科学版),2008,38(2):173-176. 被引量:63
  • 5Daivd Gorski. The Pseudo-Smarandache function [J]. Smarandche Notions, 2002,13:140-149.
  • 6Hardy G H, Wright E M. An Introduction to the Theory of Numbers[M]. Oxford: Oxford Univ. Press, 1937.
  • 7Shang Songye, Chen Guohui. An New Smarandache Multiplicative Function and Its Mean Value Formula, Research on Number Theory and Smarandache Notions (Collected Papers)[M]. USA: Hexis, 2009.
  • 8Li Ling. An new Smarandache Multiplicative Function and Its Arithmetical Properties, Research on Number Theory and Smarandache Notions (Collected Papers)[M]. USA: Hexis, 2009.
  • 9Apostol T M. Introduction to Analytic Number Theory [M]. New York: Springer-Verlag, 1976.

二级参考文献9

  • 1徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 2SMARANDACHE F.Only Problems,Not Solutions[M].Chicago:Xiquan Publishing House,1993.
  • 3WANG Yong-xing.On the Smarandache function[J].Re-search on Smarandache Problem in Number Theory,2005,2:103-106.
  • 4LU Ya-ming.On the solutions of an equation involving the Smarandarche function[J].Seientia Magna,2006,2(1):76-79.
  • 5SANDOR J.On a dual of the Pscudo-Smarandache func-tion[J].Smarandache Notions (Book Series),2002,13:16-23.
  • 6LE Mao-hua.TWo function equations[J].Smarandache Notions Journal,2004,14:180-182.
  • 7COP,SKI D.The pseudo-Smarandache functions[J].Sma-randache Notions J,2000,12:140-145.
  • 8SANDOR J.On additive analogues of certain arithmetic function[J].Smarandache Notions J,2004,14:128-132.
  • 9KASHIHARA K.Comments and topics on Smarandaehe notions and problems[M].New Mexico:Erhus University Press,1996.

共引文献62

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部