摘要
对于任意正整数n,著名的伪Smarandache函数Z(n)定义为最小的正整数m使得n|m(m+1)/2.而数论函数D(n)定义为最小的正整数m使得n|d(1)d(2)d(3)…d(m),其中d(n)为Dirichlet除数函数.本文的主要目的是利用初等方法研究一类包含伪Smarandache函数Z(n)和数论函数D(n)的方程2Z(n)=D(n)的可解性,并获得了该方程的所有正整数解.
For any positive integer n, the famous pseudo Smarandache function Z(n) is defined as the smallest positive integer m such that n | m(m+ 1)/2. The number theory function D(n) is defined as the smallest positive integer m such that n divides d(1)d(2). …… d(m), where d(n) is the Dirichlet divisor function. The main purpose of this paper is using the elementary method and the properties of the pseudo Smarandache function Z(n) and number theory function D(n) to study the solvability of the equation 2^z(n) = D(n), and obtain its all positive integer solutions.
出处
《纯粹数学与应用数学》
CSCD
2009年第3期622-624,共3页
Pure and Applied Mathematics
基金
国家自然科学基金(10671155)
陕西省教育厅自然科学基金(08JK291)