期刊文献+

矩阵右半张量积的Schur补的奇异值估计

Estimates for Singular Values of Schur Complements of the Right Semitensor Product of Complex Matrices
下载PDF
导出
摘要 对矩阵AB的奇异值,特别是最小奇异值的下界估计,是矩阵分析中的重要课题.其有很重要的理论和实际应用价值.主要研究了矩阵右半张量积特征值与(Schur补的)奇异值上(下)界估计,给出了一些Hermite矩阵右半张量积的特征值与奇异值的不等式,并且利用分块矩阵的变换技巧,得到了复杂矩阵右半张量积的Schur补的奇异值估计,改进和推广了一些现有不等式,同时进一步丰富了半张量积的理论知识. Singular value of the product of matrix AB, in particular the lower bound of the smallest singular value estimate, is an important issue in matrix analysis with important theoretical and practical application value. Some upper (lower) bound estimates for eigenvalues and singular values of Schur complements of right semitensor product of matrix are studied in this paper, some inequalities for eigenvalues and singular values of right semitensor product of Hermite matrix are given, and the singular values of Schur complements of right semitensor product of complex matrices are obtained by using the transformation skills of block matrices. All of these improve and generalize some of the existing inequalities and enrich the semi-tensor product of theoretical knowledge.
出处 《淮海工学院学报(自然科学版)》 CAS 2009年第3期1-4,共4页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
基金 国家自然科学基金资助项目(10771073)
关键词 矩阵右半张量积 HERMITE矩阵 特征值 奇异值 SCHUR补 right semitensor product of matrices Hermite matrix eigenvalues singular value Schur complement
  • 相关文献

参考文献10

  • 1程代展.Semi-tensor product of matrices and its application to Morgen's problem[J].Science in China(Series F),2001,44(3):195-212. 被引量:53
  • 2CHENG Daizhan Some applications of semitensor product of matrices in algebra[J]. Computers & Mathematics with Applications,2006,52(6-7) : 1045-1066.
  • 3刘建州,谢清明.矩阵乘积的Schur余的奇异值估计[J].数学年刊(A辑),1998,19A(3):285-288. 被引量:4
  • 4杨兴东,戴华,黄卫红.矩阵乘积之Schur补的奇异值估计[J].高等学校计算数学学报,2008,30(2):152-158. 被引量:1
  • 5WAGN Boying,XI Boyan, ZHANG Fuzhen. Some inequalities for sum and product of positive semidefinite matrices [J]. Linear Algebra and Its Applications, 1999,293(1-3) :39-49.
  • 6LIU Jianzhou. Some inequalities for singular values and eigenvalues of generalized Schur complements of products of matrices[J]. Linear Algebra and Its Applications, 1999,286 (1-3) : 209-221.
  • 7TAO Yunxing. More results on singular value inequalities of matrices[J]. Linear Algebra and Its Applications,2006,416(2-3) :724-729.
  • 8宋彩芹,赵建立.矩阵右半张量积的加权Drazin逆的反序律[J].淮海工学院学报(自然科学版),2009,18(1):4-6. 被引量:3
  • 9MARSHALL A W,OLKIN I. Inequalities: Theory of Majorization and Its Applieations[M]. New York: Academic Press, 1979.
  • 10WANG Boying, GONG Mingpeng. Some eigenvalue inequalities for positive semidefinite matrix power products[J]. Linear Algebra and Its Applications, 1993,184:249-260.

二级参考文献32

  • 1庄瓦金.体上矩阵的广义逆[J].数学杂志,1986,6(11):105-112.
  • 2曹重光.环上矩阵的广义逆[J].数学学报,1988,31(1):131-132.
  • 3MARSAGLIA G,STYAN G P H. Equalities and inequalities for rank of matrices[J]. Linear and Multilinear Algebra, 1974,2:269-292.
  • 4BEN-ISRAEL A, GREVILLE T N E. Generalized Inverses : Theory and Applications[M]. 2nd ed. New York: Springer-Verlag, 2003.
  • 5CHINE R E,GREVILLE T N E. A Drazin inverse for rectangular matrices[J]. Linear Algebra Application, 1980,43:53-62.
  • 6WANG Guorong,WgI Yimin,QIAO Sanzheng. Generalized Inverses: Theory and Computations[M]. Beijing/ New York: Science Press,2004.
  • 7[1]Huang L., Linear Algebra in Systems and Control Theory (in Chinese), Beijing: Science Press, 1984.
  • 8[2]Zhang, F., Matrix Theory, Basic Results and Techniques, New York: Springer-Verlag, 1999.
  • 9[3]Sokolnikoff, I. S., Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continua, 2nd ed., New York: John Wiley & Sons, Inc., 1964.
  • 10[4]Boothby, W. M., An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd ed., New York: Academic Press, 1986.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部