期刊文献+

Adaboost算法的FPGA实现与性能分析 被引量:1

The Implementation of Adaboost Algorithm on FPGA and Performance Analysis
下载PDF
导出
摘要 Adaboost算法采用由弱到强的级联型分类器用以快速检测人脸。但在实际应用中计算量巨大。在PC机上用纯软件实现该算法得到的目标检测速度也难以达到实时。本文论述了一种采用像素积分计算阵列的人脸检测系统,能够对图像像素进行流水运算处理以达到提升检测速度的效果,并在Virtex5系列FPGA上实现。通过该并行系统对单幅352x288的图像进行人脸检测,其速率可以达到50帧/秒,可以满足工业应用的实时性要求。 Adaboost algorithm applies the enhanced cascaded classifiers to detect human face fast. It requires huge computation volume. Even the detecting speed is not acceptable for implementing this algorithm with pure software on PC platform. This article presents an architecture composed by pixel integration computing arrays. Through the pipeline pixel process to the image and implement the system on Virtex5 FPGA platform, the speed is boosting obviously. Take the face detect test with resolution of 352x288 to the system, the result can be 50 fps, which could meet the requirement of the industry application field.
作者 许昀 赵峰
出处 《微计算机信息》 2009年第29期149-150,209,共3页 Control & Automation
关键词 ADABOOST Virtex5 FPGA 像素积分 实时性 Adaboost VirtexS FPGA Pixel Integration Real-time
  • 相关文献

参考文献5

  • 1P. Viola and M. Jones. "Rapid Object Detection using a Boosted Cascade of Simple Features". IEEE CVPR, 2001.
  • 2孙莹涛,李玉山.人脸检测系统的SoPC设计[J].电子设计应用,2006(11):95-96. 被引量:2
  • 3冯素玲.人脸识别常用方法研究[J].微计算机信息,2004,20(5):94-95. 被引量:25
  • 4Theo Theoeharides, Narayanan Vijaykrishnan, Mary Jane Irwin. "A Parallel Architecture for Hardware Face Detection". ISVLSI 2006, Karlsruhe, Germany, 452-453.
  • 5Yuehua Shi, Feng Zhao, Zhong Zhang. "Hardware Implementation of ADABOOST ALGORITHM and Verification". AINAW 2008, 343 - 346.

二级参考文献4

共引文献25

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部