期刊文献+

基于Random-Walk算法的DR图像分割方法 被引量:1

DR Image Segmentation Algorithm Based on Random-Walk
下载PDF
导出
摘要 本文算法对原图像进行快速Mallat小波分解得到骨干图后,利用其高频子带梯度信息优化边的权重,并在概率阈值的准则下对争议区域做进一步划分,最后把最大到达概率所在类的标签赋予未标定顶点,并扩展到原图像,得到分割边界。用微软GrabCut分割数据库图像和实际DR图像对该算法进行了验证,该算法能快速而有效地分割出特定的图像,适用于DR图像的分割,为进行组织增强和进一步提高DR图像质量打下基础。 A novel method which is based on the Random-Walk algorithm is proposed for DR image segmentation and solves the key problem of tissue enhancement to improve the quality of DR image further. Firstly,the original image is decomposed to build the backbone graph by using Mallat's fast wavelet transform. And the edge weight is optimized by using gradient information from high-frequency subband. Then a further division of the ambiguous area is done under the probability threshold criteria. Finally, the label with the greatest probability is assigned to each unlabeled vertex,and image segmentation boundaries are obtained by expanding the labeled backbone graph to the original image. The experimental results on Microsoft GrabCut segmentation database images and real DR images demonstrated that this algorithm above is able to segment out the expectable part from DR image effectively and fast.
出处 《北京生物医学工程》 2009年第5期449-453,共5页 Beijing Biomedical Engineering
基金 国家自然科学基金(60771007)资助
关键词 DR 图像分割 Random—Walk算法 骨干图 概率阈值准则 DR image segmentation Random-Walk algorithm backbone graph probability threshold criteria
  • 相关文献

参考文献9

  • 1Pohle R, Toennies KD. Segmentation of medical images using adaptive region growing[ C]. Proc SPIE Medical Imaging,2001,2 (27) : 1337 - 1346.
  • 2Grau V,Mewes A, Alcaniz M, et al. Improved watershed transform for medical image segmentation using prior information [ J ]. IEEE Transactions on Medical Imaging,2004,23 (4) : 447- 458,145 -148.
  • 3朱付平,田捷,林瑶,葛行飞.基于Level Set方法的医学图像分割[J].软件学报,2002,13(9):1866-1872. 被引量:48
  • 4Leo Grady. Random walks for image segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006, 28(11): 1768-1783.
  • 5Grady L, Funka-Lea G. Multi-Label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials [ C ]. Proc Workshop Computer Vision and Math. Methods in Medical and Biomedical Image Analysis,2004,3117: 230 - 245.
  • 6Duchenne O, Audibert J, Keriven R, et al. Segmentation by transduction [ C ]. Computer Vision and Pattern Recognition, 2008 : 1 - 8.
  • 7Zhu Xiaojin. Lafferty John. Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning [ C ]. Proceedings of the 22nd International Conference on Machine Learning, 2005:1057 - 1064.
  • 8Mallat SG. A theory for multiresolution signal decomposition : The wavelet representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11 (7) : 674 - 693.
  • 9Juan Liu,Moulin P. Information-Theoretic Analysis of lnterseale and Intrascale Dependencies Between Image Wavelet Coefficients [ J]. IEEE Transactions on Image Processing, 2001,10 ( 11 ) : 1647 -1658.

二级参考文献11

  • 1Malladi, R., Sethian, J.A., Vemuri, B. Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(2):158~174.
  • 2Bertalmio, M., Sapiro, G., Randall, G. Region tracking on level-set methods. IEEE Transactions on Medical Imaging, 1999,18(5): 448~451.
  • 3Masouri, A-R., Sirivong, B., Konrad, J. Multiple motion segmentation with level sets. In: Proceedings of the SPIE, Vol 3974. 2000. 584~595.
  • 4Paragios, N., Deriche, R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(3):266~280.
  • 5Samon, C., Blanc-Feraud, L., Aubert, G., et al. Level set model for image classification. International Journal of Computer Vision, 2000,40(3):187~197.
  • 6Vincent, L., Soille, P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(6):583~589.
  • 7Sijbers, J., Verhoye, M., Scheunders, P., et al. Watershed-Based segmentation of 3D mr data for volume quantization. Magnetic Resonance Imaging, 1997,15(6):679~688.
  • 8Sethian, J.A. Fast marching methods. SIAM Review, 1999,41(2):199-235.
  • 9Sethian, J.A. A fast marching level set method for monotonically advancing fronts. In: Proceedings of the National Academy of Sciences, Vol 93. 1996. 1591~1595.
  • 10Malladi, R., Sethian, J.A. An O(Nlog(N)) algorithm for shape modeling. In: Proceedings of the National Academy of Sciences, Vol 93. 1996. 9389~9392.

共引文献47

同被引文献15

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部