摘要
A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component analysis (PCA) is first applied to obtain a few principal components and corresponding weight vectors correlated with individual anthropometric parameters. Then the weight vectors act as output of the nonlinear regression model. Some measured anthropometric parameters are selected as input of the model according to the correlation coefficients between the parameters and the weight vectors. After the regression model is learned from the training data, the individual HRIR can be predicted based on the measured anthropometric parameters. Compared with a back-propagation neural network (BPNN) for nonlinear regression, better generalization and prediction performance for small training samples can be obtained using the proposed PCA-SVR algorithm.
A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component analysis (PCA) is first applied to obtain a few principal components and corresponding weight vectors correlated with individual anthropometric parameters. Then the weight vectors act as output of the nonlinear regression model. Some measured anthropometric parameters are selected as input of the model according to the correlation coefficients between the parameters and the weight vectors. After the regression model is learned from the training data, the individual HRIR can be predicted based on the measured anthropometric parameters. Compared with a back-propagation neural network (BPNN) for nonlinear regression, better generalization and prediction performance for small training samples can be obtained using the proposed PCA-SVR algorithm.
基金
Project supported by the Shanghai Natural Science Foundation (Grant No.08ZR1408300)
the Shanghai Leading Academic Discipline Project (Grant No.S30108)