期刊文献+

On the Diophantine Equation y^2= px(x^2+ 2)

On the Diophantine Equation y^2= px(x^2+ 2)
下载PDF
导出
摘要 For any fixed odd prime p, let N(p) denote the number of positive integer solutions (x, y) of the equation y^2 = px(x^2 + 2). In this paper, using some properties of binary quartic Diophantine equations, we prove that ifp ≡ 5 or 7(mod 8), then N(p) = 0; ifp ≡ 1(mod 8), then N(p) 〈 1; if p〉 3 andp ≡ 3(rood 8), then N(p) ≤ 2.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第4期499-503,共5页 数学季刊(英文版)
基金 Foundation item: Supported by the Natural Science Foundation of Shaanxi Province(2009JM1006)
关键词 cubic and quartic Diophantine equation number of solutions upper bound 2000 MR Subject Classification: 11D25 四次丢番图方程 过氧化物酶 国防部 奇素数 正整数 规划 自由 解数
  • 相关文献

参考文献7

  • 1CASSEIS J W S. A Diophantine equation[J]. Glasgow Math J, 1985, 27(1): 11-18.
  • 2LJUNGGREN W. Ein Satz fiber die Diophantische Gleichung Ax^2 - By^2 = C(C = 1, 2, 4)[J]. Tolfte Skand Mat Lund, 1953: 188-194.
  • 3LJUNGGREN W. Some remarks on the Diophantine equations x^2 = Dy^4= 1 and x^4 - Dy^2 =1[J]. J London Math Soc, 1966, 4(4): 542-544.
  • 4LUCA F, WALSH P G. Squares in Lucas sequences with Diophantine applications[J]. Acta Arith, 2001 100(1): 47-62.
  • 5LUCA F, WALSH P G. On a Diophantine equation of cassels[J]. Glasgow Math J, 2005, 47(2): 303-307.
  • 6PETR K. Sur L Equation de Pell Casopis Pest[J]. Mat Fys, 1927, 56(1): 57-66.
  • 7WALSH P G. A note on a theorem of Ljunggren and the Diophantine equation x^2 - kxy^2 + y^4 =1, 4[J] Arch Math Basel, 1999, 73(1): 119-125.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部