期刊文献+

薄壁杆约束扭转的单肢解析化分析方法 被引量:3

Slabs-disassembled method of thin-walled bar analysis considering restrained torsion
下载PDF
导出
摘要 针对薄壁杆件约束扭转的基本受力反应分析问题,采用与符拉索夫的经典约束扭转理论截然不同的立论途径,将自由扭转刚度视为调整因素,而将剥离了该抗力效应的薄壁杆件基本体系作为主要分析对象,推导出基于翘曲理论并考虑了自由扭转刚度影响的杆件刚度方程及结间荷载的等效措施。此外,提出了基于微段薄壁杆简化单刚的有效数值化分析方法。上述研究表明,对于钢构件等具有薄壁构型截面形式的杆件,这种单肢解析化分析方法无需进行复杂的截面特性如弯、翘曲惯矩或弯、形心坐标等的分析,力与变形的表达简洁、直接。本文的抗力性能分析和表述方式可为薄壁构件的稳定及畸变等研究提供新的思路切入点。 The method used in the analysis of thin-walled bars in this paper is distinct from that of V. Z. Vlasov's. The resistance system of a thin-walled bar is divided here into two parts: the first part contains torsional rigidity only while the second part consists of all but torsional rigidity. The interaction forces between the two parts represented by the shear forces on the middle surface of the thin-walled bar are derived. The resistance forces of the first system, together with external loads, are appli system whose performance has been studied carefully, then the element stiffness matrix ed to the second and the equivalent nodal forces of external loads of the bar are deduced. The new method, consequently, doesn't need the calculation of sectional properties, such as the warping constant and the moment of inertia. Further more, based on this expression of stiffness, the buckling and distortional analysis of thin-walled members can be carried out.
作者 金声 李开禧
出处 《计算力学学报》 EI CAS CSCD 北大核心 2009年第6期956-960,共5页 Chinese Journal of Computational Mechanics
关键词 薄壁杆件 约束扭转 单肢化方法 刚度方程 翘曲理论 thin-walled bar restrained torsion slabs-disassembled method stiffness equation warpping theory
  • 引文网络
  • 相关文献

参考文献2

二级参考文献7

  • 1Bleich F. Buckling strength of metal structures [M]. New York: McGraw-Hill, 1952.
  • 2Timoshenko S P, Gere J M. Theory of elastic stability [M]. 2nd ed. New York: McGraw-Hill, 1961.
  • 3Chen W F, Atsuta T. Theory of beam-columns (Volume II) [M]. New York: McGraw-Hill, 1977.
  • 4Alwis W A M, Wang C M. Wagner term in flexuraltorsional buckling of thin-walled open-profile columns[J].Engineering Structure, 1996, 18(2): 125-132.
  • 5Anderson M, Trahair N S. Stability of monosymmetric beams and cantilevers [J]. Journal of Structure Division, ASCE, 1972, 98(1): 269--285.
  • 6童根树,张磊.薄壁构件弯扭失稳的一般理论[J].建筑结构学报,2003,24(3):16-24. 被引量:15
  • 7张磊,童根树.工字形截面悬臂钢梁的稳定性研究[J].工程力学,2003,20(4):176-182. 被引量:16

共引文献4

同被引文献36

  • 1胡毓仁.图论在薄壁杆件结构计算中的应用[J].武汉轻工科技,1989,23(6):21-29. 被引量:3
  • 2汤建宏,聂孟喜,梁应辰.复杂薄壁建筑物断面特性判定及几何参数的图论处理[J].水运工程,2006(3):13-17. 被引量:5
  • 3汤建宏,聂孟喜,梁应辰.考虑剪切变形效果的薄壁结构三维动力计算[J].水力发电学报,2007,26(1):77-83. 被引量:2
  • 4徐芝纶.弹性力学简明教程[M].2版.北京:高等教育出版社,1983:8-9:119-159.
  • 5Vlasov V Z. Thin-Walled Elastic Beams [M]. 2nd ed Jerusalem: Israel Program for Scientific Translations 1961.
  • 6Benscoter S U. A theory for torsion and bending for multicell beams [J]. Journal of Applied Mechanics, 1954, 21: 25-34.
  • 7Kollbrunner C F, Basler K. Torsion in Structures [M]. Berlin: Springer-Verlag, 1969.
  • 8Gunnlaugsson G A, Pedersen P T. A finite element formulation for beams with thin walled cross-sections [J]. Computers & Structures, 1982, 15(6): 691-699.
  • 9Hu Y R, Jin X D, Chen B Z. A finite element model for static and dynamic analysis of thin-walled beams with asymmetric cross-sections [J]. Computers & Structures, 1996, 61(5): 897-908.
  • 10Vieira JR L C M, Malite M, Schafer B W. Simplified models for cross-section stress demands on C-section purlins in uplift [J]. Thin-Walled Structures, 2010,48: 33-41.

引证文献3

二级引证文献6

相关主题

;
使用帮助 返回顶部