摘要
This investigation explores a low-noise amplifier (LNA) with a coplanar waveguide (CPW) structure, in which a two-stage amplifier is associated with a cascade schematic circuit, implemented in 0.15μm GaAs pseudomorphic high electron mobility transistor (pHEMT) technology in a Ka-band (26.540.0 GHz) microwave monolithic integrated circuit (MMIC). The experimental results demonstrate that the proposed LNA has a peak gain of 12.53 dt3 at 30 GHz and a minimum noise figure of 3.3 dB at 29.5 GHz, when biased at a Vds of 2 V and a Vgs of-0.6 V with a drain current of 16 mA in the circuit. The results show that the millimeter-wave LNA with coplanar waveguide structure has a higher gain and wider bandwidth than a conventional circuit. Finally, the overall LNA characterization exhibits high gain and low noise, indicating that the LNA has a compact circuit and favorable RF characteristics. The strong RF character exhibited by the LNA circuit can be used in millimeter-wave circuit applications.
This investigation explores a low-noise amplifier (LNA) with a coplanar waveguide (CPW) structure, in which a two-stage amplifier is associated with a cascade schematic circuit, implemented in 0.15μm GaAs pseudomorphic high electron mobility transistor (pHEMT) technology in a Ka-band (26.540.0 GHz) microwave monolithic integrated circuit (MMIC). The experimental results demonstrate that the proposed LNA has a peak gain of 12.53 dt3 at 30 GHz and a minimum noise figure of 3.3 dB at 29.5 GHz, when biased at a Vds of 2 V and a Vgs of-0.6 V with a drain current of 16 mA in the circuit. The results show that the millimeter-wave LNA with coplanar waveguide structure has a higher gain and wider bandwidth than a conventional circuit. Finally, the overall LNA characterization exhibits high gain and low noise, indicating that the LNA has a compact circuit and favorable RF characteristics. The strong RF character exhibited by the LNA circuit can be used in millimeter-wave circuit applications.