摘要
Taking into account both the intrinsic curvature and Zeeman effects, persistent currents in a multi-walled carbon nanotorus are explored by using a supercell method, within the tight-binding formalism. It is shown that in the absence of the Zeeman effect, the intrinsic curvature induces some dramatic changes in energy spectra and thus changes in the shape of the flux-dependent current. A paramagnetism diamagnetism transition is observed. With consideration of the Zeeman splitting energy, the period of persistent current is destroyed, and a diamagnetism-paramagnetism transition is obtained at high magnetic field. In addition, we further explore the effect of external electric field energy (Eef) on persistent current, indicating that it changes unmonotonously with Eef.
Taking into account both the intrinsic curvature and Zeeman effects, persistent currents in a multi-walled carbon nanotorus are explored by using a supercell method, within the tight-binding formalism. It is shown that in the absence of the Zeeman effect, the intrinsic curvature induces some dramatic changes in energy spectra and thus changes in the shape of the flux-dependent current. A paramagnetism diamagnetism transition is observed. With consideration of the Zeeman splitting energy, the period of persistent current is destroyed, and a diamagnetism-paramagnetism transition is obtained at high magnetic field. In addition, we further explore the effect of external electric field energy (Eef) on persistent current, indicating that it changes unmonotonously with Eef.
基金
Project supported by the National Natural Science Foundation of China (Grant No. 10674113)
Program for New Century Excellent Talents in University of China (Grant No. NCET-06-0707)
Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200726)
Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 06A071)
partially by Hunan Provincial Innovation Foundation For Postgraduate (Grant No. S2008yjscx06)