摘要
基于弹性、粘弹性和压电材料的本构关系,利用Hamilton原理,推导了主动约束层阻尼板的有限元动力学模型。结合压电材料的机电耦合特性,采用自感电压的位移和速度反馈,对主动约束层阻尼板进行了闭环振动控制,研究了不同控制增益条件下,主动约束层阻尼板的动态特性。研究结果表明:采用自感电压的比例、微分反馈控制,能有效控制约束层阻尼板的振动,增大振动能量耗散,尤其对频率共振峰有明显抑制作用。由于该方法结构简单,容易实现,有很好的工程应用前景。
A finite element dynamic model for plates with active constrained layer damping (ACLD) treatments is derived based on the constitutive equations of elastic, viscoelastic and piezoelectric materials by application of Hamilton principle. The closed-loop control system considering displacement and velocity feedback of self-sensing voltage from sensor layer is developed. The dynamic behaviors of active constrained layer damping (ACLD) plates including nature frequencies, loss factors and responses in frequency domain are investigated. The influence of control gains on vibration suppression is discussed. Numerical examples demonstrate the validity of the finite element model and the control strategy approach. The proposed control strategy can be widely used to structure vibration control with ACI.D patches due to its simple scheme and easy implementation.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2010年第2期1-7,共7页
Journal of Chongqing University
基金
国家自然科学基金资助项目(50775225)
关键词
主动约束层阻尼
粘弹性材料
比例微分控制
振动控制
有限元法
active constrained layer damping
viscoelastic material
proportional differential control
vibration control
finite element method