摘要
Fixed-point continuation (FPC) is an approach, based on operator-splitting and continuation, for solving minimization problems with l1-regularization:min ||x||1+uf(x).We investigate the application of this algorithm to compressed sensing signal recovery, in which f(x) = 1/2||Ax-b||2M,A∈m×n and m≤n. In particular, we extend the original algorithm to obtain better practical results, derive appropriate choices for M and u under a given measurement model, and present numerical results for a variety of compressed sensing problems. The numerical results show that the performance of our algorithm compares favorably with that of several recently proposed algorithms.
Fixed-point continuation (FPC) is an approach, based on operator-splitting and continuation, for solving minimization problems with l1-regularization:min ||x||1+uf(x).We investigate the application of this algorithm to compressed sensing signal recovery, in which f(x) = 1/2||Ax-b||2M,A∈m×n and m≤n. In particular, we extend the original algorithm to obtain better practical results, derive appropriate choices for M and u under a given measurement model, and present numerical results for a variety of compressed sensing problems. The numerical results show that the performance of our algorithm compares favorably with that of several recently proposed algorithms.
基金
supported by an NSF VIGRE grant (DMS-0240058)
supported in part by NSF CAREER Award DMS-0748839 and ONR Grant N00014-08-1-1101
supported in part by NSF Grant DMS-0811188 and ONR Grant N00014-08-1-1101