期刊文献+

FIXED-POINT CONTINUATION APPLIED TO COMPRESSED SENSING:IMPLEMENTATION AND NUMERICAL EXPERIMENTS 被引量:7

FIXED-POINT CONTINUATION APPLIED TO COMPRESSED SENSING:IMPLEMENTATION AND NUMERICAL EXPERIMENTS
原文传递
导出
摘要 Fixed-point continuation (FPC) is an approach, based on operator-splitting and continuation, for solving minimization problems with l1-regularization:min ||x||1+uf(x).We investigate the application of this algorithm to compressed sensing signal recovery, in which f(x) = 1/2||Ax-b||2M,A∈m×n and m≤n. In particular, we extend the original algorithm to obtain better practical results, derive appropriate choices for M and u under a given measurement model, and present numerical results for a variety of compressed sensing problems. The numerical results show that the performance of our algorithm compares favorably with that of several recently proposed algorithms. Fixed-point continuation (FPC) is an approach, based on operator-splitting and continuation, for solving minimization problems with l1-regularization:min ||x||1+uf(x).We investigate the application of this algorithm to compressed sensing signal recovery, in which f(x) = 1/2||Ax-b||2M,A∈m×n and m≤n. In particular, we extend the original algorithm to obtain better practical results, derive appropriate choices for M and u under a given measurement model, and present numerical results for a variety of compressed sensing problems. The numerical results show that the performance of our algorithm compares favorably with that of several recently proposed algorithms.
作者 Elaine T.Hale
出处 《Journal of Computational Mathematics》 SCIE CSCD 2010年第2期170-194,共25页 计算数学(英文)
基金 supported by an NSF VIGRE grant (DMS-0240058) supported in part by NSF CAREER Award DMS-0748839 and ONR Grant N00014-08-1-1101 supported in part by NSF Grant DMS-0811188 and ONR Grant N00014-08-1-1101
关键词 l1 regularization Fixed-point algorithm CONTINUATION Compressed sensing Numerical experiments. l1 regularization, Fixed-point algorithm, Continuation, Compressed sensing,Numerical experiments.
  • 相关文献

参考文献81

  • 1T. Adeyemi and M. Davies, Sparse representations of images using overcomplete complex wavelets, 2005 IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.
  • 2G. Aubert, J. Bect, L. Blanc-Feraud, and A. Chambolle, A l1-unified variational framework for image restoration, European Conference on Computer Vision, Prague, Lecture Notes in Computer Sciences 3024, IV, 2004.
  • 3D. Baron, M. Wakin, M. Duarte, S. Sarvotham, and R. Baraniuk, Distributed compressed sensing, Preprint, 2005.
  • 4J. Barzilai and J. Borwein, Two point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141-148.
  • 5D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, Massachusetts, second edition, 1999.
  • 6J. Bioucas-Dias, Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors, IEEE T. Image Process., 15:4 (2006), 937-951.
  • 7J. Bioucas-Dias and M. Figueiredo, A new TWIST: two-step iterative shrinkage/thresholding algorithms for image restoration, IEEE T. Image Process., 16:12 (2007), 2992-3004.
  • 8T. Blumensath and M. Davies, Iterative thresholding for sparse approximations, Preprint, 2007.
  • 9T. Blumensath and M. E. Davies, Gradient pursuits, IEEE T. Signal Proces., 56:6 (2008), 2370-2382.
  • 10S. Bourguignon, H. Carfantan, and J. Idier, A sparsity-based method for the estimation of spectral lines from irregularly sampled data, IEEE Journal of Selected Topics in Signal Processing, 1 (2007), 575-585.

同被引文献35

  • 1刘财,李鹏,刘洋,王典,冯晅,刘殿秘.基于seislet变换的反假频迭代数据插值方法[J].地球物理学报,2013,56(5):1619-1627. 被引量:22
  • 2张晓光,张兴敢,吴行标,耿道华.回归函数的小波支持向量机鲁棒估计法[J].南京大学学报(自然科学版),2006,42(5):528-534. 被引量:4
  • 3国九英,周兴元.F-K域等道距道内插[J].石油地球物理勘探,1996,31(2):211-218. 被引量:41
  • 4T H Elaine, Wotao Yin, Yin Zhang. A Fixed -Point Continuation Method for 11 - Regularized Minimization with Applications to Compressed Sensing [ R ]. CAAM Technical Report TR07 - 07, 2007.
  • 5赵瑞珍.压缩传感与稀疏重构的理论及应用[DB/OL].http://www.paper.edu.cn,中国科技论文在线.
  • 6Neff R,ZAkhor A. Very Low bit rate video coding based on matching pursuits [ J]. IEEE Transac- tions on Circuits and Systems for Video Technolo- gy, 1997,7 ( 1 ) : 158 - 171.
  • 7Rockafellar R. Convex Analysis [ M ]. Princeton : Princeton University Press, 1970.
  • 8Chambolle A, DeVore R A, N - Y Lee, et al. Non- linear wavelet image processing: variational prob- lems, compression, and noise removal through wavelet shrinkage [ J ]. IEEE Transactions on Im- age Processing, 1998,7 (3) :319 - 335.
  • 9Barzilai J, Borwein J. Two point step size gradi- ent methods[J]. IMA J Numer Anal,1988,8( 1 ) : 141 - 148.
  • 10方红,章权兵,韦穗.基于亚高斯随机投影的图像重建方法[J].计算机研究与发展,2008,45(8):1402-1407. 被引量:33

引证文献7

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部