期刊文献+

基于PK模型的一种自适应遗传算法研究 被引量:3

Research on adaptive genetic algorithm based on PK model
下载PDF
导出
摘要 遗传算法可以被理解为在逐代演化的过程中,适应性强的个体或种群具有更高的生存可能性的一种并行搜索算法。提出了基于PK竞争策略的遗传算法(Player Killing Genetical Algorithm,PKGA),其核心思想在于通过PK赛式的竞争筛选,直至剩下一个全程最优的个体即为全局最优解。通过对全程最优解的即时检测,同时配合交叉率与变异率在个体粒度上自适应地动态调整,算法能很好地避开局部极值点并减少进化过程中的退化现象。这种PK竞争筛选策略保证了算法较高的搜索效率和较强的鲁棒性。仿真实验证明,算法在应对早熟问题和退化现象及收敛效率等方面明显优于传统的标准遗传算法。 As parallel searching and optimization methods,Genetic algorithms promise that the individuals or populations with better adaptability have a higher possibility to survive in the process of evolution.According to which,an adaptive genetic algorithm based on PK model(Player Killing Genetieal Algorithm,PKGA) is proposed.Its core idea is that the best individual,as the global optimal solution,will survive by PK competition at the end of the evolution.With the real-time detection of the global optimal solution and the adaptive and dynamic adjustment of cross-rate and mutation-rate in individual size,the PKGA is able to overcome GA deception problem and reduce the degradation phenomenon of evolution.The PK competitive strategy ensures that PKGA is an efficient and robust searching and optimization method.Experiments show that PKGA is superior to traditional simple genetic algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第7期52-56,共5页 Computer Engineering and Applications
基金 安徽省教育厅重大研究项目基金
关键词 遗传算法 PK模型 适应度函数 算法仿真 genetic algorithms Player Killing(PK) model fitness function algorithm simulation
  • 相关文献

参考文献12

  • 1Holland J H.Adaptation in natural and artificial systems[M].Arbor: University of Michigan Press, 1975.
  • 2Back T.Self adaptation in genetic algorithms[C]//Varela F J.Proceedings of First European Conference on Artificial Life, 1992:263-271.
  • 3沐阿华,周绍磊,于晓丽.一种快速自适应遗传算法及其仿真研究[J].系统仿真学报,2004,16(1):122-125. 被引量:19
  • 4Lobo J H.The parameter-less genetic algorithm:rational and automated parameter selection for simple genetic algorithm operation[D]. University of Lisbon,Portugal,2000.
  • 5Lobo F G,Goldberg D E.The parameter-less genetic algorithm in practice[J].Information Sciences,2000, 167(1/4) :217-232.
  • 6Ghosh A,Nath B.Multi-objective rule mining using genetic algorithms[J].Information Sciences ,2000,163( 1/3 ): 123-133.
  • 7Back T.Self adaptation in genetic algorithms[C]//Varela F J.Proceedings of First European Conference on ArtificialLife,1992:263-271.
  • 8Krink T,Ursem R K.Parameter control using the agent based patchwork model[C]//Proceedings of The Congress on Evolutionary Computation, 2000: 77-83.
  • 9Voosen D S,Muhlenbein H.Strategy adaptation by competing subpopulations[M]//Parallel Problem Solving from Nature III.Berlin, Germany: Springer-Verlag, 1994 : 199-208.
  • 10Eiben A E,Sprinkhuizen-Kuyper I G,Thijseen B A.Competing crossovers in an adaptive GA framework[C]//Proceedings of the Fifth IEEE Conference on Evolutionary Computation.IEEE Press,1998: 787-792.

二级参考文献4

共引文献18

同被引文献35

  • 1张思才,张方晓.一种遗传算法适应度函数的改进方法[J].计算机应用与软件,2006,23(2):108-110. 被引量:51
  • 2陈培友,汪定伟.多物品最优组合供应模式确定问题的模型研究[J].中国管理科学,2006,14(4):35-39. 被引量:15
  • 3Holland J H.Adaptation in natural and artificial systems[M].Arbor:University of Michigan Press,1975.
  • 4Holland J H.Adap tati on in natural and artificial systems[M].Ann Arbor:University ofMichigan Press,1975.
  • 5Dejong KA.The analysis of the behavi or of a class of genetic adaptive systems[D].Ann Arbor:University ofMichigan,1975.
  • 6Oldbergd G E.Genetic algorithms in search,op ti mization and machine learning[M].Bost on:Addis on Wesley Longman Press,1989.
  • 7Fogel D B.An introduction to simulated evolutionary optimization[J].IEEE Trans.Neural Networks,1994,5(1).
  • 8Goldberg D E.Genetic algorithm in search,optimization and machine learning[M].Addison-Wesley Publishing Company Inc.,1985.
  • 9Qin Ming-hao,Xu Ye-yi.Dynamic analysis and optimization design of six-rod mechanism in high-speed punching press[C] ∥The International Conference on Mechanical Dynamics.Shen-yang,China,1987.
  • 10杨开明,石川,叶佩青,吕强.数控系统轨迹段光滑转接控制算法[J].清华大学学报(自然科学版),2007,47(8):1295-1299. 被引量:26

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部