期刊文献+

关于两种二阶应变梯度理论 被引量:2

A STUDY ON THE TWO SECOND-ORDER STRAIN GRADIENT THEORIES
下载PDF
导出
摘要 对常见的两种应变梯度理论进行了深入的理论分析,比较了它们在公式推导、能量表达、物理解释和应用领域方面的差异.选择钢筋拉拔弹性阶段和超薄悬臂梁受压弯曲两个典型的算例,采用可以通过C^(0-1)分片检验的18自由度应变梯度平面三角形单元和轴对称三角形单元,通过数值计算比较了两种理论在描述细观力学性能方面的差异. There are various strain gradient theories derived from phenomenal theory and nonlocal continuum mechanics.Meanwhile,there are two popular second-order strain gradient theories in which strain gradient term was introduced into the constitutive law with positive and negative signs respectively.In this paper,these two theories are discussed in the aspect of formula derivation,energy expression,and application fields.By using the 18-DOF triangle strain gradient plan element(RCT9+RT9) and axisymmetric element(BCIZ+ART9) which can pass C0-1 patch test,the elastic pull-out processes of the reinforced concrete bond specimen and the deformation of a cantilever beam are simulated to compare the limitation of the two theories in the analysis of microstructures.
出处 《力学学报》 EI CSCD 北大核心 2010年第1期138-145,共8页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(10672032)~~
关键词 应变梯度理论 材料长度参数 有限元 C1弱连续 C0-1分片检验 strain gradient theory material characteristic length finite element method C^1 weak continuity C^(0-1) patch test
  • 相关文献

参考文献27

  • 1Muhlhaus HB, Vardoulakis I. The thickness of shear bands in granular materials.Geotechnique, 1987, 37:271-283.
  • 2Stolken JS, Evans AG. A microbend test method for measuring the plasticity length scale. Acta Metallurgica et Materialia, 1998, 46:5109-5115.
  • 3Kouzeli M, Mortensen A. Size dependent strengthening in particle reinforced aluminium. Acta Metallurgica et Materialia, 2002, 50:39-51.
  • 4Cosserat E, Cosserat F. Theorie Des Corp Deformables. Paris: Herman, 1909.
  • 5Toupin R. Elastic materials with couple-stresses. Arch Rational Mech Anal, 1962, 11:385-414.
  • 6Mindlin RD. Influence of couple-stress on stress concentrations. Experimental Mechanics, 1963, 3:1-7.
  • 7Fleck NA, Muller GM, et al. Strain gradient plasticity: theory and experiment. Acta Metallurgiea et Materialia, 1994, 42:475-487.
  • 8Fleck NA, Hutchinson JW. Strain gradient plasticity. Adv Appl Mech, 1997, 33:295-361.
  • 9Aifantis EC. On the microstructural origin of certain inelastic models. Trans ASME J Eng Mater Technol, 1984, 106:326-330.
  • 10陈万吉.应变梯度理论有限元:C^(0-1)分片检验及其变分基础[J].大连理工大学学报,2004,44(4):474-477. 被引量:12

二级参考文献36

  • 1STOLKEN J S, EVANS A G. A microbend test method for measuring the plasticity length scale[J]. Acta Metallurgica et Materials, 1998, 46: 5109- 5115.
  • 2COSSERAT E. The orie des Corps Deformables [M]. Paris: A. Hermann et Fils, 1909.
  • 3FLECK N A, HUTCHINSON J W. Strain gradient plasticity[J]. Adv Appl Mech , 1997,33:295-361.
  • 4GAO H, HUANG Y, NIX W D, et al. Mechanism-based strain gradient plasticity-Ⅰ, theory[J]. J Mech Phys Solids, 1999,47 : 1239-1263.
  • 5GAO H, HUANG Y, NIX W D, et al. Mechanism-based strain gradient plastieity-Ⅱ, theory [J]. J Mech Phys Solids, 2000,48:99-128.
  • 6CHEN S H, WANG T C. A new deformation theory with strain gradient effects[J]. Int J of Plasticity, 2002,18:971-995.
  • 7ZERVOS A, PAPANASTASIOU P, VARDOULAKIS I. Modelling of loealisation and scale effect in thick-walled cylinders with gradient elastoplasticity[J]. Int J Solids Strut, 2001,38:5081-5095.
  • 8SHU J Y, FLECK N A. The prediction of a size effect in micro-indentation[J]. Int J Solids Struct, 1998,35(13) : 1363-1383.
  • 9AI-KAH, CHEN WANJI. Finite element formulations of strain gradient theory for mierostructures and the C^0-1 patch test[J]. Int J Number Methods Eng, 2004,61 : 433-454.
  • 10BAZELEY G P, CHEUNG Y K, IRONS B M. Triangular element in bending conforming and non-conforming solution[A]. Proc Conf Matrix Methods in Structural Mechanics, Air Force Ins Tech [C]. Wright-Patterson A F Base, Ohio, 1965. 547-576.

共引文献17

同被引文献49

引证文献2

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部