期刊文献+

压缩采样技术及其应用 被引量:78

An Introduction to Compressive Sampling and Its Applications
下载PDF
导出
摘要 如何降低宽带模拟信号数字化过程中的采样率,以及如何有效的对大量数据进行压缩存储一直是学者们关心的问题。该文综述了最近出现的一种新型信号处理方法—压缩采样(Compressive Sampling,CS),也称压缩传感(Compressive Sensing)。该方法通过对稀疏信号进行观测而非采样,只需少量观测点就能精确的重构原始信号。结果表明新方法的观测频率可以远远低于奈奎斯特采样频率。该文除介绍其基本原理和主要实现方法外,同时列举了多种应用,并指出若干待研究的问题。 The problems of how to reduce the sampling rate in the broadband analog signal digitization and how to compress effectively the large amount of data for storage are always concerned by researchers. The recent proposed Compressive Sampling or Compressive Sensing method to solve the said problems is introduced in this paper. The method, which employs non-adaptive linear projections that preserve the structure of the signal, can capture and represent the compressible signal at a rate significantly below Nyquist rate. This paper not only presents the key procedures of this theory but also lists a variety of applications and points out the questions to be studied.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第2期470-475,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60872087) 国家自然科学基金联合资助重点项目(广东联合基金U0835003)资助课题
关键词 压缩采样 稀疏性 观测矩阵 信号恢复 Compressive Sampling (CS) Sparsity Measurement matrix Signal reconstruction
  • 相关文献

参考文献36

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E, Romberg J, and Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Candes E. Compressive sampling. Int. Congress of Mathematics, Madrid, Spain, 2006, 3: 1433-1452.
  • 4Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-124.
  • 5方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 6傅迎华.可压缩传感重构算法与近似QR分解[J].计算机应用,2008,28(9):2300-2302. 被引量:31
  • 7Brandenburg K. MP3 and AAC explained. AES 17th international conference on High-Quaiity Audio coding, Erlangen, Germany, Sept. 1999: 1-12.
  • 8Pennebaker W and Mitchell J. JPEG: Still image data compression standard. Van Nostrand Reinhold, 1993.
  • 9Candes E and Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3):969-985.
  • 10Candes E and Tao T. Near-optimal signal recovery from random projections and universal encoding strategies. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.

二级参考文献21

  • 1方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 2Cand&E J,Romberg J,Tao T.Signal recovery from incomplete and inaccurate measurements[J].Comm Pure Appl Math,2005,59(8):1207-1223.
  • 3Donoho D L,Stark P B.Uncertainty principles and signal recovery[J].SIAM J Applied Math,1989,49:906-931.
  • 4Cand'es E,Romberg J.Quantitative robust uncertainty principles and optimally sparse decompositions[J].Foundations of Comput Math,2006.
  • 5Cand'es E,Tao T.Near optimal signal recovery from random projections and universal encoding strategies[J].IEEE Trans Inform Theory,2004.
  • 6Cand'es E J,Tao T.Decoding by linear programming[J].IEEE Trans Inform Theory,2005,51(12):4203-4215.
  • 7Donoho D.Compressed sensing[J].IEEE Trans Inf Theory,2006,52(4):1289-1306.
  • 8CAND~S E, ROMBERG J, TAO T. Robust uncertainty principle: exact signal reconstruction from highly incomplete frequency information[ J]. IEEE Transactions on Information Theory, 2006, 52(2) : 489 - 509.
  • 9BARANIUK R G. Compressive sensing[ J]. IEEE Signal Processing Magazine, 2007, 24(4) : 118 - 121.
  • 10CANDES E, TAO T. Near optimal signal recovery from random matrix projections: universal encoding strategies? [ J]. IEEE Transactions on Information Theory, 2006, 52(2) : 489 - 509.

共引文献55

同被引文献832

引证文献78

二级引证文献353

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部