摘要
To solve the resource-constrained project scheduling problem (RCPSP), a hybrid ant colony optimization (HACO) approach is presented. To improve the quality of the schedules, the HACO is incorporated with an extended double justification in which the activity splitting is applied to predict whether the schedule could be improved. The HACO is tested on the set of large benchmark problems from the project scheduling problem library (PSPLIB). The computational result shows that the proposed algo- rithm can improve the quality of the schedules efficiently.
To solve the resource-constrained project scheduling problem (RCPSP), a hybrid ant colony optimization (HACO) approach is presented. To improve the quality of the schedules, the HACO is incorporated with an extended double justification in which the activity splitting is applied to predict whether the schedule could be improved. The HACO is tested on the set of large benchmark problems from the project scheduling problem library (PSPLIB). The computational result shows that the proposed algo- rithm can improve the quality of the schedules efficiently.
基金
supported by Liaoning BaiQianWan Talents Program(20071866-25)