期刊文献+

The State Equations Methods for Stochastic Control Problems

The State Equations Methods for Stochastic Control Problems
下载PDF
导出
摘要 The state equations of stochastic control problems,which are controlled stochastic differential equations,are proposed to be discretized by the weak midpoint rule and predictor-corrector methods for the Markov chain approximation approach. Local consistency of the methods are proved.Numerical tests on a simplified Merton's portfolio model show better simulation to feedback control rules by these two methods, as compared with the weak Euler-Maruyama discretisation used by Krawczyk.This suggests a new approach of improving accuracy of approximating Markov chains for stochastic control problems. The state equations of stochastic control problems, which are controlled stochastic differential equations, are proposed to be discretized by the weak midpoint rule and predictor-corrector methods for the Markov chain approximation approach. Local consistency of the methods are proved. Numerical tests on a simplified Merton's portfolio model show better simulation to feedback control rules by these two methods, as compared with the weak Euler-Maruyama discretisation used by Krawczyk. This suggests a new approach of improving accuracy of approximating Markov chains for stochastic control problems.
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第1期79-96,共18页 高等学校计算数学学报(英文版)
基金 supported by the China Postdoctoral Science Foundation (No.20080430402).
关键词 Stochastic optimal control Markov chain approximation Euler-Maruyama discretisation midpoint rule predictor-corrector methods portfolio management. 随机微分方程 控制问题 状态方程 马尔可夫链 校正方法 近似方法 模型显示 投资组合
  • 相关文献

参考文献13

  • 1J.AZZATO AND J.B.KRAWCZYK,SOCSol4l an improved MATLAB package for approximating the solution to a continuous-time stochastic optimal control problem,Munic Personal RePEc Archive,Paper No.1179,2006.
  • 2J.AZZATO AND J.B.KRAWCZYK,Applying a finite-horizon numerical optimization method to a period optimal control problem,Automatica,44 (2008),pp.1642-1651.
  • 3W.H.FLEMING AND R.W.RISHEL,Deterministic & Stochastic Optimal Control,Springer-Verlag,New York etc.,1975.
  • 4L.M.HOCKING,Optimal Control-An Introduction to the Theory with Applications,Clarendon Press,Oxford,1991.
  • 5RE.KLODEN,A brief overview of numerical methods for stochastic differential equations,http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.7565.
  • 6RE.KLODEN AND E.PLATEN,Numerical Solution of Stochastic Differential Equations,Springer-Verlag,Berlin Heidelberg,1992.
  • 7J.B.KRAWCZYK,A Markovian approximated solution to a portfolio management problem,http://www.item.woiz.polsl.pl/issue/journall.htm,Inf.Technol.Econ.Manag.,1 (2001).
  • 8J.B.KRAWCZYK,On loss-avoiding payoff distribution in a dynamic portfolio management problem,The Journal of Risk Finance,9 (2008),No.2,pp.151-172.
  • 9H.J.KUSHNER AND B DUPUIS,Numerical Methods for Stochastic Control Problems in Continuous Time,Springer-Verlag,New York etc.,2001.
  • 10R.C.MERTON,Optimum consumption and portfolio rules in a continious-time model,J.Of Economic Theory,3 (1971),pp.373-413.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部