摘要
s The geometrical structures of Cd0.75TM0.25Se (TM = Ti, V, Cr and Mn) are optimized, and then their electric and magnetic properties are investigated by performing first-principles calculations within the generalized gradient approximation for the exchange-correlation function based on density functional theory. Cd0.75TM0.25Se (TM =Ti and V) are found to have high spin-polarization near 100% at the Fermi level. Cd0.75TM0.25Se (TM = Cr and Mn) are half-metallic ferromagnets whose spin-polarization at the Fermi level is absolutely +100%. The supercell magnetic moments of Cd0.75Cr0.25Se and Cdo.75Mno.25Se are 4.00 and 5.00 μB, which arise mainly from Cr-ions and Mnions, respectively. The half-metallicity of Cdo.75Cro.25Se is more stable than that of Cd0.75Mn0.25Se. The electronic structures of Cr-ions and Mn-ions are Cr eg2↑t22g↑ and Mn e2 3 ↑t23g↑, respectively.
s The geometrical structures of Cd0.75TM0.25Se (TM = Ti, V, Cr and Mn) are optimized, and then their electric and magnetic properties are investigated by performing first-principles calculations within the generalized gradient approximation for the exchange-correlation function based on density functional theory. Cd0.75TM0.25Se (TM =Ti and V) are found to have high spin-polarization near 100% at the Fermi level. Cd0.75TM0.25Se (TM = Cr and Mn) are half-metallic ferromagnets whose spin-polarization at the Fermi level is absolutely +100%. The supercell magnetic moments of Cd0.75Cr0.25Se and Cdo.75Mno.25Se are 4.00 and 5.00 μB, which arise mainly from Cr-ions and Mnions, respectively. The half-metallicity of Cdo.75Cro.25Se is more stable than that of Cd0.75Mn0.25Se. The electronic structures of Cr-ions and Mn-ions are Cr eg2↑t22g↑ and Mn e2 3 ↑t23g↑, respectively.
基金
Project supported by Chongqing Natural Science Foundation (Grant Nos. CSTC2007BB4391,CSTC2007BB2448,CSTC2007BB4385 and CSTC2008BB4083)
Chongqing Science and Technology Foundation (Grant Nos. kj060515 andkj080518)