期刊文献+

An evolutionary particle filter based EM algorithm and its application 被引量:2

An evolutionary particle filter based EM algorithm and its application
下载PDF
导出
摘要 In this paper, an evolutionary recursive Bayesian estimation algorithm is presented, which incorporates the latest observation with a new proposal distribution, and the posterior state density is represented by a Gaussian mixture model that is recovered from the weighted particle set of the measurement update step by means of a weighted expectation-maximization algorithm. This step replaces the resampling stage needed by most particle filters and relieves the effect caused by sample impoverishment. A nonlinear tracking problem shows that this new approach outperforms other related particle filters. In this paper, an evolutionary recursive Bayesian estimation algorithm is presented, which incorporates the latest observation with a new proposal distribution, and the posterior state density is represented by a Gaussian mixture model that is recovered from the weighted particle set of the measurement update step by means of a weighted expectation-maximization algorithm. This step replaces the resampling stage needed by most particle filters and relieves the effect caused by sample impoverishment. A nonlinear tracking problem shows that this new approach outperforms other related particle filters.
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第1期70-74,共5页 哈尔滨工业大学学报(英文版)
基金 Sponsored by the National Security Major Basic Research Project of China(Grant No.973 -61334)
关键词 particle filter expectation-maximization (EM) Gaussian mixture model (GMM) nonlinear systems 粒子滤波算法 进化 期望最大化算法 粒子过滤器 应用 电磁 高斯混合模型 估计算法
  • 相关文献

参考文献11

  • 1Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50 : 174 - 188.
  • 2Anderson B, Moore J. Optimal Filtering. New Jersey: Prentice-Hall, 1979.
  • 3Koteeha J H, Djuric P M. Gaussian sum particle filtering. IEEE Transactions on Signal Processing, 2003, 51 (10): 2603 - 2613.
  • 4Julier S, Uhlmann J, Durrant-Whyte H. A new approach for filtering nonlinear systems. Proceedings of the American Control Conference. 1995. 1628 - 1632.
  • 5Norgaard M, Poulsen N, Ravn O. New developments in state estimation for nonlinear systems. Automatica, 2000, 36 : 1627 - 1638.
  • 6Van Der Merwe R. Probabilistic Inference using SigmaPoint Kalman Filters. Portland: OGI School of Science & Engineering, Oregon Health & Science University, 2003.
  • 7Doucet A, De Freitas N, Gordon N. Sequential MonteCarlo Methods in Practice. New York: Springer-Verlag, 2001.
  • 8McLachlan G J, Krishnan T. The EM Algorithm and Extensions. New York : Wiley, 1997.
  • 9Kotecha J H, Djuric P M. Gaussian particle filtering. IEEE Transactions on Signal Processing, 2003, 51 : 2593 - 2602.
  • 10Shalom B Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation: Theory, Algorithm and Software. New York: Wiley, 2001.

同被引文献25

  • 1方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 2叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 3徐茂格,宋耀良,刘力维.基于修正扩展卡尔曼滤波和粒子滤波的混沌信号检测与跟踪[J].南京理工大学学报,2007,31(4):514-517. 被引量:5
  • 4Gordon N, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [ J]. Radar and Signal Processing, IEE Proceedings F, 1993,140(2): 107-113.
  • 5Doucet A,Godsill S. On sequential Monte Carlo sampling methods for Bayesian filtering [ J ]. Statistics and Computing,2000,10( 1 ) : 197-208.
  • 6Kong A, Liu J. Sequential imputations and Bayesian missing data problems [ J ]. Journal American Statistical Association, 1994,89 (2) : 278-288.
  • 7Wang Xiangyang, Wan Wanggen, Yu Xiaoqing. Annealed particle filter based on particle swarm optimization for ar- tictdated three-dimensional human motion tracking [ J ]. Optical Engineering,2010,49( 1 ). 2041-2043.
  • 8Yu Yihua,Zheng Xuanyuan. Particle filter with ant colony optimization for frequency offset estimation in OFDM systems with unknown noise distribution [ J ]. Signal Processing,2011,91 (5) : 1339-1342.
  • 9Kennedy J, Eberhart R C. Particle swarm optimisation [ A ]. Proceedings of IEEE International Conference on Neural Networks [ C ]. Perth, Australia: IEEE, 1995 : 1942-1948.
  • 10Borden B H, Mumford M L. A statistical glint/radar cross section target model[ J ]. IEEE Trans on AES, 1983,19:781-785.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部