摘要
The super-cell plane wave expansion method is employed to calculate band structures for the design of a siliconbased one-dimensional phononic crystal plate with large absolute forbidden bands. In this method, a low impedance medium is introduced to replace the free stress boundary, which largely reduces the computational complexity. The dependence of band gaps on structural parameters is investigated in detail. To prove the validity of the super-cell plane wave expansion, the transmitted power spectra of the Lamb wave are calculated by using a finite element method. With the detailed computation, the band-gap of a one-dimensional plate can be designed as required with appropriate structural parameters, which provides a guide to the fabrication of a Lamb wave phononic crystal.
The super-cell plane wave expansion method is employed to calculate band structures for the design of a siliconbased one-dimensional phononic crystal plate with large absolute forbidden bands. In this method, a low impedance medium is introduced to replace the free stress boundary, which largely reduces the computational complexity. The dependence of band gaps on structural parameters is investigated in detail. To prove the validity of the super-cell plane wave expansion, the transmitted power spectra of the Lamb wave are calculated by using a finite element method. With the detailed computation, the band-gap of a one-dimensional plate can be designed as required with appropriate structural parameters, which provides a guide to the fabrication of a Lamb wave phononic crystal.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos. 10874086 and 10834009)
the National Basic Research Program of China (Grant No. 2010CB327803)