期刊文献+

New statistical model for radar HRRP target recognition 被引量:2

New statistical model for radar HRRP target recognition
下载PDF
导出
摘要 The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical charac- teristics. But how to determine the proper number of the models is a problem. This paper develops a variational Bayesian mixture of factor analyzers (VBMFA) model. This procedure can obtain a lower bound on the Bayesian integral using the Jensen's inequality. An analytical solution of the Bayesian integral could be obtained by a hypothesis that latent variables in the model are indepen- dent. During computing the parameters of the model, birth-death moves are utilized to determine the optimal number of model au- tomatically. Experimental results for measured data show that the VBMFA method has better recognition performance than FA and MFA method. The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical charac- teristics. But how to determine the proper number of the models is a problem. This paper develops a variational Bayesian mixture of factor analyzers (VBMFA) model. This procedure can obtain a lower bound on the Bayesian integral using the Jensen's inequality. An analytical solution of the Bayesian integral could be obtained by a hypothesis that latent variables in the model are indepen- dent. During computing the parameters of the model, birth-death moves are utilized to determine the optimal number of model au- tomatically. Experimental results for measured data show that the VBMFA method has better recognition performance than FA and MFA method.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期204-210,共7页 系统工程与电子技术(英文版)
基金 supported in part by the National Natural Science Foundation of China(60772140) the Program for Cheung Kong Scholarsand Innovative Research Team in University(IRT0645)
关键词 radar automatic target recognition (RATR) high reso- lution range profile (HRRP) variational Bayesian mixtures of factor analyzers (VBMFA) variational Bayesian(VB) mixtures of factor analyzers (MFA). radar automatic target recognition (RATR), high reso- lution range profile (HRRP), variational Bayesian mixtures of factor analyzers (VBMFA), variational Bayesian(VB), mixtures of factor analyzers (MFA).
  • 相关文献

参考文献10

  • 1S. P. Jocobs. Automatic target recognition using high-resolution radar rang profiles. Washington University, 1999.
  • 2F. Chen, L. Du, H. W. Liu, et al. An ampfitude-scale and time- shift jointly optimization for radar HRRP recognition. Proc. of International Conference on Radar, 2008: 515-518.
  • 3L. Du, H. W Liu, Z. Bao, et al. A two-distribution compounded statistical model for radar HRRP target recognition. IEEE Trans. on Signal Processing, 2006, 54(6): 2226-2238.
  • 4L. Du, H. W. Liu, Z. Bao. Radar HRRP statistical recognition parametric model and model selection. 1EEE Trans. on Signal Processing, 2008, 56(5): 1931-1944.
  • 5N. Ueda, R. Nakano, Z. Ghahramani, et al. SMEM algorithm for mixture models. Neural Computation, 2000, 12(9): 2109-2128.
  • 6Z. Ghahramani, M. Beak Variational inference for Bayesian mixture of factor analysers. Advances in NIPS, 2000, 12: 449- 455.
  • 7H. Attias. Inferring parameters and structure of latent variable models by variational Bayes. Proc. of 15th Conference on Uncertainty in Artificial Intelligence, 1999.
  • 8Z. Ghahramani, G. E. Hinton. The EM algorithm for mixtures of factor analyzers. University of Toronto, 1996.
  • 9E B. Stephen. Markov chain Monte Carlo method and its application. The Statistician, 1998, 47: 69-100.
  • 10D. J. C. MacKay. Probable networks and plausible predictions--a review of practical Bayesian methods for supervised neural networks. Computation in Neural Systems, 1995, 6: 469- 505.

同被引文献30

  • 1王贵生,王东进,陈卫东.多基地雷达系统一维距离像的三维成像[J].现代雷达,2005,27(4):5-9. 被引量:2
  • 2许人灿,姜卫东,陈曾平.目标一维距离像特征提取方法研究[J].系统工程与电子技术,2005,27(7):1173-1174. 被引量:9
  • 3王贵生,王东进.双基地雷达系统中的高分辨距离像[J].系统工程与电子技术,2005,27(8):1387-1390. 被引量:4
  • 4冯德军,陈志杰,王雪松,王国玉.基于一维距离像的导弹目标运动特征提取方法[J].国防科技大学学报,2005,27(6):43-47. 被引量:14
  • 5Chen H W, Sun Z K. A nonlinear optimized location algorithm for bistatic radar system [ C ]. IEEE Proceedings of the National Aerospace and Electronics Conference, Dayton, USA, May 22 - 26, 1995.
  • 6Chen Y G, Sun Z K, Chen H W. A study on multi-stage tracking technique in TR~R bistatic system[ C]. IEEE Proceedings of the National Aerospace and Electronics Conference, Dayton, USA, May 22 - 26, 1995.
  • 7Chen Y G, Wu J H. Bistatic location and tracking based onintermittent data fusion [ C ]. IEEE Proceedings of the National Aerospace and Electronics Conference, Dayton, USA, July 14 - 18, 1997.
  • 8Zhang N, Tao R, Wang Y. BRVAAF and performance analysis for target detection [ J ]. Science in China Series E : Techniques Sciences, 2009, 52 (7) :2096 - 2103.
  • 9Martorella M, Palmer J, Homer J, et al. On bistatic inverse synthetic aperture radar [ J ]. IEEE Trans. on AES, 2007, 43 (3) :1125 - 1134.
  • 10Chen V C, Rosiers A D, Lipps R. imaging and resolution analysis [ C ] Conference, Pasadena, CA, May 4 Bi-static ISAR range-doppler ~ IEEE International Radar - 8, 2009.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部