期刊文献+

加权KNN分类器在HRRP库外目标拒判中的应用 被引量:11

Application of a weighted KNN classifier for HRRP out-of-database target rejection
下载PDF
导出
摘要 针对雷达自动目标识别中的库外目标拒判问题,提出了一种人工生成库外样本的方法和一种加权k最邻近(knearest neighbors,KNN)分类器。通过人工生成库外高分辨距离像样本,解决了在训练阶段无法获取库外样本的难题。加权KNN分类器同时满足了基于问题和基于数据两大设计要求,能够很好地处理拒判问题。通过基于接收机工作特性(receiver operating characteristic,ROC)准则和基于损失函数准则的仿真实验,证明了加权KNN分类器具备优良的拒判性能。 To cope with the out-of-database target rejection problem in radar automatic target recognition(ATR),a method that artificially generates out-of-database examples and a weighted k nearest neighbors(KNN) classifier are proposed.By artificially generating out-of-database high-resolution range profiles(HRRPs),the problem of acquiring out-of-database examples during the training step is solved.The weighted KNN classifier is both problem-dependent and data-dependent,and thus it is well suited for the associated rejection problem.Experiments conducted under the receiver operating characteristic(ROC) rule and the loss function rule respectively show that the weighted KNN classifier obtains satisfactory rejection ability.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第4期718-723,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60772140) 教育部长江学者和创新团队支持计划(IRT0645) 国防预研项目 国防预研基金资助课题
关键词 自动目标识别 拒判 分类器 高分辨距离像 接收机工作特性 损失函数 automatic target recognition(ATR) rejection classifier high-resolution range profile(HRRP) receiver operating characteristic loss function
  • 相关文献

参考文献11

  • 1Du Lan,Liu Hongwei,Bao Zheng,et al.Radar HRRP target recognition based on higher order spectra[J].IEEE Trans.on Signal Processing,2005,53(7):2359-2368.
  • 2Du Lan,Liu Hongwei,Bao Zheng,et al.A two-distribution compounded statistical model for radar HRRP target recognition[J].IEEE Trans.on Signal Processing,2006,54(6):2226-2238.
  • 3Chen Bo,Yuan Li,Liu Hongwei,et al.Kernel subclass discriminant analysis[J].Neurocomputing,2007,71(1-3):455-458.
  • 4Chen Bo,Liu Hongwei,Bao Zheng.A kernel optimization method based on the localized kernel Fisher criterion[J].Pattern Recognition,2008,41(3):1098-1109.
  • 5Chen Bo,Liu Hongwei,Bao Zheng.Optimizing the data-dependent kernel under a unified kernel optimization framework[J].Pattern Recognition,2008,41(6):2107-2119.
  • 6Landgrebe Thomas C W,Tax David M J,Paclík Pavel,et al.The interaction between classification and reject performance for distance-based reject-option classifiers[J].Pattern Recognition Letters,2006,27(8):908-917.
  • 7柴晶,刘宏伟,保铮.一种提高雷达HRRP识别和拒判性能的新方法[J].西安电子科技大学学报,2009,36(2):233-239. 被引量:5
  • 8保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2006.
  • 9Landgrebe Thomas C W,Duin Robert P W.Approximating the multiclass ROC by pairwise analysis[J].Pattern Recognition Letters,2007,28(13):1747-1758.
  • 10Landgrebe Thomas C W,Duin Robert P W.Efficient multiclass ROC approximation by decomposition via confusion matrix perturbation analysis[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2008,30(5):810-822.

二级参考文献9

  • 1Du Lan, Liu Hongwei, Bao Zheng, et al. Radar HRRP Target Recognition Based on Higher Order Spectra[J]. IEEE Trans on Signal Processing, 2005, 53(7): 2359-2368.
  • 2Cristianini N, Shawe T J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods [M]. Cambridge: Cambridge University Press, 2000.
  • 3Tax D, Duin R. Support Vector Domain Description [J]. Pattern Recognition Letters, 1999(20) : 1191-1199.
  • 4Tax D, Duin R. Support Vector Data Description [J]. Machine Learning, 2004, 54(1): 45-66.
  • 5Lanckriet G, Cristianini N, Bartlett P, et al. Learning the Kernel Matrix with Semidefinite Programming [J]. Journal of Machine Learning Research, 2004(5): 27-72.
  • 6Tax D. One-class Classification [D]. Netherland: Delft University of Technology, 2001.
  • 7Parzen E. On Estimation of a Probability Density Function and Mode [J]. Annals of Mathenatical Statistics, 1962(33) : 1065-1076.
  • 8Bishop C. Neural Networks for Pattern Recognition [M]. Walton Street: Oxford University Press, 1995.
  • 9Duda R D, Hart P E, Stork D G. Pattern Classification [M]. San Francisco: John Wiley and Sons, 2001.

共引文献69

同被引文献77

  • 1陈振洲,李磊,姚正安.基于SVM的特征加权KNN算法[J].中山大学学报(自然科学版),2005,44(1):17-20. 被引量:51
  • 2苏利庆.有序样本聚类法在经济分析中的应用[J].统计研究,2006,23(7):76-77. 被引量:5
  • 3顾樵.生物光子学[M].北京:科学出版社,2007.2-15.
  • 4叶涛,朱学峰,李向阳,史步海.基于改进k-最近邻回归算法的软测量建模[J].自动化学报,2007,33(9):996-999. 被引量:15
  • 5Hamamoto Y, Uchimura S, Tomita S. A bootstrap technique for nearest neighbor classifier design [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 ( 1 ) :73-79.
  • 6KHAN N,KSANTINI R,AHMAD I,et al.Covariance- guided one-class support vector machine[J].Pattern Recognition,2014,47(6):2165-2177.
  • 7CABRAL G and OLIVEIRA A.One-class classification based on searching for the problem features limits[J].Expert Systems with Applications,2014,41(11):7182-7199.
  • 8HE X,MOUROT G,MAQUIN D,et al.Multi-task learning with one-class SVM[J].Neurocomputing,2014,133(6):416-426.
  • 9ZHANG H,CAO L,and GAO S.A locality correlation preserving support vector machine[J].Pattern Recognition,2014,47(9):3168-3178.
  • 10DAGEFU F and SARABANDI K.High-resolution subsurface imaging of deeply submerged targets based on distributed near-ground sensors[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(2):1089-1098.

引证文献11

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部