摘要
针对雷达自动目标识别中的库外目标拒判问题,提出了一种人工生成库外样本的方法和一种加权k最邻近(knearest neighbors,KNN)分类器。通过人工生成库外高分辨距离像样本,解决了在训练阶段无法获取库外样本的难题。加权KNN分类器同时满足了基于问题和基于数据两大设计要求,能够很好地处理拒判问题。通过基于接收机工作特性(receiver operating characteristic,ROC)准则和基于损失函数准则的仿真实验,证明了加权KNN分类器具备优良的拒判性能。
To cope with the out-of-database target rejection problem in radar automatic target recognition(ATR),a method that artificially generates out-of-database examples and a weighted k nearest neighbors(KNN) classifier are proposed.By artificially generating out-of-database high-resolution range profiles(HRRPs),the problem of acquiring out-of-database examples during the training step is solved.The weighted KNN classifier is both problem-dependent and data-dependent,and thus it is well suited for the associated rejection problem.Experiments conducted under the receiver operating characteristic(ROC) rule and the loss function rule respectively show that the weighted KNN classifier obtains satisfactory rejection ability.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2010年第4期718-723,共6页
Systems Engineering and Electronics
基金
国家自然科学基金(60772140)
教育部长江学者和创新团队支持计划(IRT0645)
国防预研项目
国防预研基金资助课题
关键词
自动目标识别
拒判
分类器
高分辨距离像
接收机工作特性
损失函数
automatic target recognition(ATR)
rejection
classifier
high-resolution range profile(HRRP)
receiver operating characteristic
loss function