期刊文献+

理性参与者秘密共享方案研究综述 被引量:4

A Survey of Rational Secret Sharing Schemes
下载PDF
导出
摘要 理性参与者在秘密共享过程中根据自己的效用采取行动,该概念的引入使得秘密共享方案研究面临许多新挑战。由于理性秘密共享是秘密共享研究领域一个新兴的研究方向,尚存在诸多问题有待解决。重点介绍了理性参与者效用假设,详细综述和比较了典型的理性秘密共享方案,最后指出了存在的开放问题和解决思路。目前的研究进展表明,非同步信道、复杂接入结构、安全性和可用性相结合的方案是未来重点研究方向。 Rational individuals in a secret sharing scheme always choose their strategies according to expected payoffs. The research of secret sharing schemes meets many new challenges due to the concerning of rational individuals. However, as a new direction of the research field, there are many open problems waited to be solved. In this paper, the utility assumption are introduced, the classic schemes of rational secret sharing are discussed and compared in detail. In the last, the open research problems and the possible solution are pointed out. Recent related work indicates that future work will focus on the combination of security and computable in rational secret scheme in complex access structures using asynchronous communication channel.
出处 《南京邮电大学学报(自然科学版)》 2010年第2期89-94,共6页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(60873231) 江苏省高校自然科学基金(08KJB520006) 江苏省"六大人才高峰"基金(06-E-044)资助项目
关键词 秘密共享 理性参与者 博弈论 secret sharing rational individual game theory
  • 相关文献

参考文献18

  • 1SHAMIR A.How to share a secret[J].Communications of the ACM,1979,22(11):612-613.
  • 2HALPERN J,TEAGUE V.Rational secret sharing and multi-party computation:extended abstract[C]//Proc of 36t ACM Symposium on Theory of Computing(STOC).Chicago:ACM Press,2004:623-632.
  • 3HALPERN J.Computer science and game theory:A brief survey[M/OL]//MACMILLAN P.2nd ed.The New Palgrave Dictionary of Economics.http://www.cs.cornell.edu/home/halpern/.
  • 4DODIS Y,RABIN T.Cryptography and game theory[M]//NISAN N.DEN T R,TARDOS E,et al.Algorithmic Game Theory.Cambridge:Cambridge University Press,2007:181-207.
  • 5DODIS Y,HALEVI S,RABIN T.A cryptographic solution to a game theoretic problem[C]//Proc of CRYPTO'2000.Berlin:Springer,2000,1880:112-131.
  • 6LEPINSKI M,MICALI S,PEIKERT C,et al.Completely fair SFE and coalition-safe cheap talk[C]//Proc of 23rd ACM Symp Principles of Distributed Computing.New York:ACM.2004:1-10.
  • 7IZMALKOV S,MICAH S,LEPINSKI M.Rational secure computation and ideal mechanism design[C]//Proc of 46th IEEE Symp Foundations of Computer Science.Pittsburgh:IEEE,2005:585-595.
  • 8LYSYANSKAYA A,TRIANDOPOULOS N.Rationality and adversarial behavior in multi-party computation(extended abstract)[J].Lecture Notes in Computer Science,2006,4117:180-197.
  • 9GILAD A,YEHUDA L.Utility dependence in correct and fair rational secret sharing[C]//Proc of CRYPTO 2009.Verlay:springer,2009,5677:359-576.
  • 10MICLAI S.SHELAT A.Truly rational secret sharing[C]//Proc of 6th Theory of Cryptography Conference(TCC 2009).Berlin:Springer,2009,5444:54-71.

同被引文献35

  • 1Shamir A. How to share a secret[ J]. Communications of the ACM, 1979,22( 11 ) :612 -613.
  • 2J Halpern, V Teague. Rational secret sharing and multi-party computation : extended abstract[ C ]. 36th ACM Symposium on Theory of Computing( STOC), Chicago: STOC,2004:623 - 632.
  • 3S Gordon, J Katz. Rational secret sharing, revisited[ C]. 5th Security andcryptography for networks ( SCN ), Maiori : Springerlink, 2006.
  • 4S Maleka, A Shareef, C Pandu Rangan. Rational secret sharing with repeated games [ C ]. 4th International Conference, ISPEC 2008, Sydney : Springerlink ,2008:334 - 346.
  • 5G Kol, M Naor. Cryptography game theory: Designing protocols for exchanging information [ C ]. Fifth Theory of Cryptography Conference, TCC 2008, New York : Cryptography game theory,2008:320 - 339.
  • 6Halpern J, Teague V. Rational secret sharing and multiparty computation: Extended abstract [C] //Proe of the 36th Annual ACM Symp on Theory of Computing. New York: ACM, 2004: 623-632.
  • 7Asharov G, Lindell Y. Utility dependence in correct and fair rational secret sharing [J]. Journal of Cryptology, 2011, 24 (1): 157-202.
  • 8Ong S J, Parkes D V, Alon R, et al. Fairness with an honest minority and a rational majority [G] //LNCS 5444: Proc of the 6th Theory of Cryptography Conf. Berlin: Springer, 2009: 36-53.
  • 9Kol G, Naor M. Cryptography and game theory: Design protocols for exchanging information [G]//LNCS 4948: Proc of the 5th Theory of Cryptography Conf. Berlin: Springer, 2008:320-339.
  • 10Gordon S D, Katz J. Rational secret sharing revisited [G] // LNCS 4116: Proc of the 5th Int Conf on Security and Cryptography for Networks. Berlin.. Springer, 2006; 229- 241.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部