期刊文献+

天基雷达广域监视的恒虚警检测技术

CFAR Detection for Wide-area Surveillance Using Space-based Radar
下载PDF
导出
摘要 针对天基雷达对海广域监视应用中低信杂比和复杂杂波环境的情况,提出一种基于超分辨方法的舰船目标恒虚警检测技术。该方法中,将杂波建模为球不变随机向量(SIRV),采用基于共轭倒序阵去相关和特征值校正预处理的序贯检验进行源枚举,并采用超分辨方法估计目标控制矩阵,最后采用广义似然比检验方法,实现恒虚警检测的功能。实验结果表明,在低信杂比和相关信号源的条件下,基于去相关和特征值校正预处理的序贯检验的源枚举准确率可以达到90%以上;基于超分辨方法的目标检测技术能够实现可靠检测,检测概率接近100%,满足天基雷达对海广域监视的要求。 Wide-area sea surveillance using space-based radar has the problems of low SCR and compli- cated clutter environment, an approach based on super-resolution for CFAR detection is proposed here. First- ly, clutter is modeled as SIRV. Then, source enumeration is realized through sequential test which is im- proved by decorrelation of reverse conjugate array and correction of eigen-values, so that steering matrixes of targets are estimated using super-resolution method. Finally, CFAR detection is realized by the method of gen- eralized likelihood ratio test. Simulations show that the validity of enhanced sequential test is more than 90% in the case of low SCR and correlative sources, and that detection technique based on super-resolution can re- alize reliable detection performance ( probability of detection is close to 100% ) which satisfies the require- ments of wide-area sea surveillance using space-based radar.
出处 《信息化研究》 2010年第4期12-16,20,共6页 INFORMATIZATION RESEARCH
关键词 天基监视雷达 恒虚警检测 球不变随机向量 源枚举 超分辨技术 space-based surveillance radar constant false alarm rate(CFAR) spherically invariant random vector(SIRV) source enumeration super-resolution
  • 相关文献

参考文献10

  • 1贲德,林幼权.天基监视雷达[J].现代雷达,2005,27(4):1-4. 被引量:16
  • 2BARNARD T J,KHAN F.Statistical normalization of spherically invariant non-Gaussian clutter[J].IEEE Journal of Oceanic Engineering,2004,2(29):303-309.
  • 3CONTE E,DE M A,RICCI G.CFAR detection of distributed targets in non-Gaussian disturbance[J].IEEE Transactions on Aerospace and Electronic Systems,2002,2(38):612-621.
  • 4ABRAHAMSSON R,SELEN Y,STOICA P.Enhanced covariance matrix estimators in adaptive beamforming[C]//Proceeding of 2007 IEEE International Conference on Signal Processing,2007:969-972.
  • 5CHUNG P J,BOHME J F,HERO A O.Tracking of multiple moving sources using recursive EM algorithm[J].EURASIP Journal on Applied Signal Processing,2005(1):50-60.
  • 6WILCOX D,SELLATHURAI M,RATNARAJAH T.Subspace methods and special diversity in radars[C]//Proceeding of 2008 IEEE Radar Conference,2008:1-5.
  • 7KOICHI I, KAZUHIKO S, HIROYUKI A. High resolution DOA estimation using unwrapped phase information of MUSIC-based noise subspace [ J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2008, 8(91) : 1990-1999.
  • 8LEI H, LONG T, WU S J. Source enumeration for high-resolution array processing using improved gerschgorin radii without eigendecomposition[ J]. IEEE Transactions on Signal Processing, 2008, 12(56): 5916-5925.
  • 9CHEN W G, WONG K M, REILLY J P. Detection of the number of signals: a predicted eigen-threshold approach[ J]. IEEE Transactions on Signal Processing, 1991,5 ( 39 ) : 1088-1098.
  • 10BON N, KHENCHAF A, GARELLO R. GLRT subspace detection for range and doppler distributed targets [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 2 (44) : 678-696.

二级参考文献3

  • 1Cantafio L J. Space-Based Radar Handbook. Norwood:Artech House, 1989.
  • 2Stimson G W. Introduction to Airborne Radar. 2nd ed. New Jersey:Scitech Publishing Inc,1998.
  • 3Nohara T J, Scarlett P, Eatock B C. Radar Signal Processor for Space-Based Radar. 1993 IEEE National Radar Conference, 1993.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部