期刊文献+

基于部件的自动目标检测方法研究 被引量:10

An Automatic Method for Targets Detection Using a Component-Based Model
下载PDF
导出
摘要 该文提出了一种新的自动目标检测算法,实现对自然场景图像及高分辨率遥感图像中结构相对复杂的人造目标的自动检测。该方法基于组成物体的几何部件处理问题,降低了对训练样本数量的需求。首先选择两类典型特征,基于机器学习训练对应的分类器,有效地减少了背景中某些物体与前景目标部分特性相似对检测方法准确率的影响;然后利用标值点过程对问题建模,以对目标分布的先验约束和分类器的响应作为数据能量,自顶向下地自动检测目标。实验结果表明,该方法准确率高、鲁棒性好,具有较强的实际应用价值。 A novel target automatic detection algorithm is proposed in this paper, and it is mainly used for the processing of the man-made targets with a relatively complex structure in natural scenes images and high-resolution remote sensing images. Based on each geometric component of objects, this method needs less training samples. First of all, it selects two sorts of typical features and trains classifiers by machine learning correspondingly, which can effectively prevent the decrease of accuracy for the similarities between interest objects and some objects in background. Then the method detects targets top-down and automatically with the marked point process model, whose data terms consist of the priori constraint on the objects distribution and respondences of trained classifiers. The experimental results demonstrate the precision, robustness, and effectiveness of the proposed method.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第5期1017-1022,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(40871209) 国家863计划项目(2006AA12Z149)资助课题
关键词 目标检测 基于部件 协方差矩阵 标值点过程 Object detection Component-based Covariance matrix Marked point process
  • 引文网络
  • 相关文献

参考文献12

  • 1Opelt A and Pinz A.Fusing shape and appearance information for object category detection[C].Proc.British Machine Vision Conference,Edinburgh,UK,2006:117-126.
  • 2孙显,王宏琦,张正.基于对象的Boosting方法自动提取高分辨率遥感图像中建筑物目标[J].电子与信息学报,2009,31(1):177-181. 被引量:15
  • 3Fergus R,Perona P,and Zisserman A.A sparse object category model for efficient learning and exhaustive recognition[C].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Diego,CA,USA,2005:380-387.
  • 4Felzenszwalb P,McAllester D,and Ramanan D.A discriminatively trained,multiscale,deformable part model[C].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Anchorage,Alaska,USA,2008:1-8.
  • 5Opelt A,Pinz A,and Zisserman A.A boundary-fragment model for object detection[C].Proc.European Conference on Computer Vision,Graz,Austria,2006:575-588.
  • 6Tuzel O,Porikli F,and Meer P.Region covariance:A fast descriptor for detection and classification[C].Proc.European Conference on Computer Vision,Graz,Austria,2006:589-600.
  • 7Ortner M,Descombe X,and Zerubia,J.A marked point process of rectangles and segments for automatic analysis of digital elevation models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(1):105-119.
  • 8Agarwal S,Awan A,and Roth D.Learning to detect objects in images via a sparse,part-based representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(11):1475-1490.
  • 9Hoiem D,Rother C,and Winn J.3D layoutCRF for multi-view object class recognition and segmentation[C].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Minneapolis,MN,USA,2007:1-8.
  • 10Ahuja N and Todorovic S.Learning the taxonomy and models of categories present in arbitrary images[C].Proc.of the Eleventh IEEE International Conference on Computer Vision,Rio de Janeiro,Brazil,2007:1-8.

二级参考文献9

  • 1苏俊英,曹辉,张剑清.高分辨率遥感影像上居民地半自动提取研究[J].武汉大学学报(信息科学版),2004,29(9):791-795. 被引量:26
  • 2周俊,晏非,孙曼.基于区域分割合并的建筑物半自动提取方法[J].海洋测绘,2005,25(1):58-60. 被引量:7
  • 3侯蕾,尹东,尤晓建.一种遥感图像中建筑物的自动提取方法[J].计算机仿真,2006,23(4):184-187. 被引量:23
  • 4Definiens Image GmbH, Munich, Germany. eCognition User Guide[OL], http://www.definiensimaging.com/product .htm, 2002.
  • 5Marceau J. The scale issue in the social and naturalsciences[J]. Canadian Journal of Remote Sensing, 1999, 25(4): 347-356.
  • 6Hay G, Blaschke T, and Marceau D. A comparison of three image-object methods for the multiscale analysis of landscape structure[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2003, 57(5): 327-345.
  • 7Shi Jianbo and Malik J. Normalized cuts and image segmentation[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
  • 8Vezhnevets A and Vezhnevets V. Modest AdaBoost -teaching AdaBoost to generalize better[C]. Graphicon2005, Novosibirsk Akademgorodok, Russia, 2005: 79-81.
  • 9He X C and Yung N H C. Curvature scale space corner detector with adaptive threshold and dynamic region of support[C]. Proc 17th International Conference on Pattern Recognition, Cambridge, UK: IEEE Computer Society, 2004: 791-794.

共引文献14

同被引文献113

引证文献10

二级引证文献19

;
使用帮助 返回顶部