期刊文献+

Some Symmetry Identities for the Euler Polynomials

Some Symmetry Identities for the Euler Polynomials
下载PDF
导出
摘要 Using the generating functions, we prove some symmetry identities for the Euler polynomials and higher order Euler polynomials, which generalize the multiplication theorem for the Euler polynomials. Also we obtain some relations between the Bernoulli polynomials, Euler polynomials, power sum, alternating sum and Genocchi numbers. Using the generating functions, we prove some symmetry identities for the Euler polynomials and higher order Euler polynomials, which generalize the multiplication theorem for the Euler polynomials. Also we obtain some relations between the Bernoulli polynomials, Euler polynomials, power sum, alternating sum and Genocchi numbers.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第3期457-464,共8页 数学研究与评论(英文版)
基金 Supported by the Natural Science Foundation of Gansu Province (Grant No. 3ZS041-A25-007)
关键词 Euler polynomial Bernoulli number Bernoulli polynomial Genocchi number power sum alternating sum. Euler polynomial Bernoulli number Bernoulli polynomial Genocchi number power sum alternating sum.
  • 相关文献

参考文献8

  • 1GRAHAM R, KNUTH D, PATASHNIK O. Concrete Mathematics [M]. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1989.
  • 2TUENTER H J H.The Frobenius problem, sums of powers of integers, and recurrences for the Bernoulli numbers [J]. J. Number Theory, 2006, 117(2): 376-386.
  • 3DEEBA E Y, RODRIGUEZ D M. Stirling's series and Bernoulli numbers [J]. Amer. Math. Monthly, 1991, 98(5): 423-426.
  • 4GESSEL I. Solution to problem E3237 [J]. Amer. Math. Monthly, 1989, 96: 364-364.
  • 5HOWARD F T. Applications of a recurrence for the Bernoulli numbers [J]. J. Number Theory, 1995, 52(1): 157-172.
  • 6TUENTEB. H J H. A symmetry of power sum polynomials and Bernoulli numbers [J]. Amer. Math. Monthly, 2001, 108(3): 258-261.
  • 7YANG Shengliang. An identity of symmetry for the Bernoulli polynomials [J]. Discrete Math., 2008, 308(4): 550-554.
  • 8SRIVASTAVA H M, PINTER A. Remarks on some relationships between the Bernoulli and Euler polynomials [J]. Appl. Math. Lett., 2004, 17(4): 375-380.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部