期刊文献+

基于自适应遗传算法的LS—SVM漏磁缺陷重构

Defect Reconstruction from Magnetic Flux Leakage Signals Based on AGA-LS-SVM
下载PDF
导出
摘要 提出基于自适应遗传算法的最小二乘支持向量机算法(AGA-LS-SVM)的新方法,用于二维缺陷重构,建立由缺陷的漏磁信号到缺陷二维轮廓的映射关系。该方法实现人工裂纹缺陷的二维轮廓的重构,试验结果表明,该方法具有速度快、精度高和很好的泛化能力,为漏磁检测定量化提供了一种可行的方法。 A new method for the reconstruction of 2-D profiles is presented based on the adaptive genetic algorithm and the least squares support vector machines technique (AGA-LS-SVM) and the mapping relationship from MFL signals to 2-D profiles of defects is established. The reconstruction of 2-D profiles of artificial crack defects in the magnetic flux leakage testing is implemented by this algorithm. The results show that LS-SVM possesses quick speed, high accuracy and very good generalization ability and it is a good way for the quantification of the MFL testing.
出处 《军械工程学院学报》 2010年第2期27-29,35,共4页 Journal of Ordnance Engineering College
关键词 漏磁检测 自适应遗传算法 最小二乘支持向量机 二维轮廓 缺陷 重构 magnetic flux leakage testing AGA LS-SVM 2-D profiles defect reconstruction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部